toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Friedman, Jason; SKM, Varadhan; Zatsiorsky, Vladimir M.; Latash, Mark L. pdf  url
doi  openurl
  Title The sources of two components of variance: an example of multifinger cyclic force production tasks at different frequencies Type Journal Article
  Year 2009 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res  
  Volume 196 Issue (up) 2 Pages 263-277  
  Keywords  
  Abstract In a multifinger cyclic force production task, the finger force variance measured across trials can be decomposed into two components, one that affects the combined force output (“bad variance”) and one that does not (“good variance”). Previous studies have found similar time patterns of “bad variance” and force rate leading to an approximately linear relationship between them. Based on this finding and a recently developed model of multifinger force production, we expected the “bad variance” during cyclic force production to increase monotonically with the rate of force change, both within a cycle and across trials at different frequencies. Alternatively, “bad variance” could show a dependence on task frequency, not on actual force derivative values. Healthy subjects were required to produce cyclic force patterns to prescribed targets by pressing on unidimensional force sensors, at a frequency set by a metronome. The task was performed with only the index finger, and with all four fingers. In the task with all four fingers, the “good variance” increased approximately linearly with an increase in the force magnitude. The “bad variance” showed within-a-cycle modulation similar to that of the force rate. However, an increase in the frequency did not lead to an increase in the “bad variance” that could be expected based on the natural relationships between action frequency and the rate of force change modulation. The results have been interpreted in the framework of an earlier model of multifinger force production where “bad variance” is a result of variance of the timing parameter. The unexpected lack of modulation of the “bad variance” with frequency suggests a drop in variance of the timing parameter with increased frequency. This mechanism may serve to maintain a constant acceptable level of variance under different conditions.  
  Address Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-1106 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19468721 Approved no  
  Call Number Penn State @ write.to.jason @ Serial 15  
Permanent link to this record
 

 
Author Liebermann, D.G.; Biess, A.; Friedman, J.; Gielen, C.C.A.M.; Flash, T. pdf  url
doi  openurl
  Title Intrinsic joint kinematic planning. I: reassessing the Listing's law constraint in the control of three-dimensional arm movements Type Journal Article
  Year 2006 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res  
  Volume 171 Issue (up) 2 Pages 139-154  
  Keywords Adolescent; Adult; Analysis of Variance; *Arm; Biomechanics; Eye Movements/*physiology; Humans; Joints/*physiology; Male; Movement/*physiology; *Musculoskeletal System; Orientation/*physiology; Posture  
  Abstract This study tested the validity of the assumption that intrinsic kinematic constraints, such as Listing's law, can account for the geometric features of three-dimensional arm movements. In principle, if the arm joints follow a Listing's constraint, the hand paths may be predicted. Four individuals performed 'extended arm', 'radial', 'frontal plane', and 'random mixed' movements to visual targets to test Listing's law assumption. Three-dimensional rotation vectors of the upper arm and forearm were calculated from three-dimensional marker data. Data fitting techniques were used to test Donders' and Listing's laws. The coefficient values obtained from fitting rotation vectors to the surfaces described by a second-order equation were analyzed. The results showed that the coefficients that represent curvature and twist of the surfaces were often not significantly different from zero, particularly not during randomly mixed and extended arm movements. These coefficients for forearm rotations were larger compared to those for the upper arm segment rotations. The mean thickness of the rotation surfaces ranged between approximately 1.7 degrees and 4.7 degrees for the rotation vectors of the upper arm segment and approximately 2.6 degrees and 7.5 degrees for those of the forearm. During frontal plane movements, forearm rotations showed large twist scores while upper arm segment rotations showed large curvatures, although the thickness of the surfaces remained low. The curvatures, but not the thicknesses of the surfaces, were larger for large versus small amplitude radial movements. In conclusion, when examining the surfaces obtained for the different movement types, the rotation vectors may lie within manifolds that are anywhere between curved or twisted manifolds. However, a two-dimensional thick surface may roughly represent a global arm constraint. Our findings suggest that Listing's law is implemented for some types of arm movement, such as pointing to targets with the extended arm and during radial reaching movements.  
  Address Department of Physical Therapy, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Ramat Aviv, Israel. dlieberm@post.tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-4819 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16341526 Approved no  
  Call Number Penn State @ write.to.jason @ Serial 18  
Permanent link to this record
 

 
Author Awasthi, Bhuvanesh; Friedman, Jason; Williams, Mark A pdf  doi
openurl 
  Title Reach Trajectories Reveal Delayed Processing of Low Spatial Frequency Faces in Developmental Prosopagnosia Type Journal Article
  Year 2012 Publication Cognitive Neuroscience Abbreviated Journal  
  Volume 3 Issue (up) 2 Pages 120-130  
  Keywords  
  Abstract Developmental prosopagnosia (DP) is characterized by a selective deficit in face recognition despite normal cognitive and neurological functioning. Previous research has established configural processing deficits in DP subjects. Low spatial frequency (LSF) information subserves configural face processing. Using hybrid stimuli, here we examined the evolution of perceptual dynamics and integration of LSF information by DP subjects while they pointed to high spatial frequency (HSF) face targets. Permutation analysis revealed a 230-ms delay in LSF processing by DP subjects as compared to controls. This delayed processing is likely to contribute to the difficulties associated with face recognition in DP subjects and is reflective of their alleged reliance on local rather than global features in face perception. These results suggest that quick and efficient processing of LSF information is critical for the development of normal face perception.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Penn State @ write.to.jason @ Serial 27  
Permanent link to this record
 

 
Author Park, J.; Pazin, N.; Friedman, J.; Zatsiorsky, V.M.; Latash, M.L. pdf  url
doi  openurl
  Title Mechanical properties of the human hand digits: Age-related differences Type Journal Article
  Year 2014 Publication Clinical Biomechanics Abbreviated Journal  
  Volume 29 Issue (up) 2 Pages 129–137  
  Keywords hand; aging; friction; apparent stiffness; damping  
  Abstract Background

Mechanical properties of human digits may have significant implications for the hand function. We quantified several mechanical characteristics of individual digits in young and older adults.

Methods

Digit tip friction was measured at several normal force values using a method of induced relative motion between the digit tip and the object surface. A modified quick-release paradigm was used to estimate digit apparent stiffness, damping, and inertial parameters. The subjects grasped a vertical handle instrumented with force/moment sensors using a prismatic grasp with four digits; the handle was fixed to the table. Unexpectedly, one of the sensors yielded leading to a quick displacement of the corresponding digit. A second-order, linear model was used to fit the force/displacement data.

Findings

Friction of the digit pads was significantly lower in older adults. The apparent stiffness coefficient values were higher while the damping coefficients were lower in older adults leading to lower damping ratio. The damping ratio was above unity for most data in young adults and below unity for older adults. Quick release of a digit led to force changes in other digits of the hand, likely due to inertial hand properties. These phenomena of “mechanical enslaving” were smaller in older adults although no significant difference was found in the inertial parameter in the two groups.

Interpretations

The decreased friction and damping ratio present challenges for the control of everyday prehensile tasks. They may lead to excessive digit forces and low stability of the grasped object.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-0033 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 73  
Permanent link to this record
 

 
Author Friedman, Jason; Flash, Tamar pdf  doi
openurl 
  Title Task-dependent selection of grasp kinematics and stiffness in human object manipulation Type Journal Article
  Year 2007 Publication Cortex Abbreviated Journal  
  Volume 43 Issue (up) 3 Pages 444-460  
  Keywords  
  Abstract Object manipulation with the hand is a complex task. The task has redundancies at many levels, allowing many possibilities for the selection of grasp points, the orientation and posture of the hand, the forces to be applied at each fingertip and the impedance properties of the hand. Despite this inherent complexity, humans perform object manipulation nearly effortlessly. This article presents experimental findings of how humans grasp and manipulate objects, and examines the compatibility of grasps selected for specific tasks. This is accomplished by looking at the velocity transmission and force transmission ellipsoids, which represent the transmission ratios of the corresponding quantity from the joints to the object, as well as the stiffness ellipsoid which represents the directional stiffness of the grasp. These ellipsoids allow visualization of the grasp Jacobian and grasp stiffness matrices. The results show that the orientation of the ellipsoids can be related to salient task requirements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Penn State @ write.to.jason @ Serial 14  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: