|
Records |
Links |
|
Author |
Krasovsky, T.; Weiss, P.L.; Zuckerman, O.; Bar, A.; Keren-Capelovitch, T.; Friedman, J. |
|
|
Title |
DataSpoon: Validation of an Instrumented Spoon for Assessment of Self-Feeding |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Sensors (Basel, Switzerland) |
Abbreviated Journal |
Sensors (Basel) |
|
|
Volume |
20 |
Issue |
7 |
Pages |
|
|
|
Keywords |
concurrent validity; feasibility; kinematics; outcome assessment; rehabilitation |
|
|
Abstract |
Clinically feasible assessment of self-feeding is important for adults and children with motor impairments such as stroke or cerebral palsy. However, no validated assessment tool for self-feeding kinematics exists. This work presents an initial validation of an instrumented spoon (DataSpoon) developed as an evaluation tool for self-feeding kinematics. Ten young, healthy adults (three male; age 27.2 +/- 6.6 years) used DataSpoon at three movement speeds (slow, comfortable, fast) and with three different grips: “natural”, power and rotated power grip. Movement kinematics were recorded concurrently using DataSpoon and a magnetic motion capture system (trakSTAR). Eating events were automatically identified for both systems and kinematic measures were extracted from yaw, pitch and roll (YPR) data as well as from acceleration and tangential velocity profiles. Two-way, mixed model Intraclass correlation coefficients (ICC) and 95% limits of agreement (LOA) were computed to determine agreement between the systems for each kinematic variable. Most variables demonstrated fair to excellent agreement. Agreement for measures of duration, pitch and roll exceeded 0.8 (excellent agreement) for >80% of speed and grip conditions, whereas lower agreement (ICC < 0.46) was measured for tangential velocity and acceleration. A bias of 0.01-0.07 s (95% LOA [-0.54, 0.53] to [-0.63, 0.48]) was calculated for measures of duration. DataSpoon enables automatic detection of self-feeding using simple, affordable movement sensors. Using movement kinematics, variables associated with self-feeding can be identified and aid clinical reasoning for adults and children with motor impairments. |
|
|
Address |
Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1424-8220 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:32283624; PMCID:PMC7180859 |
Approved |
no |
|
|
Call Number |
|
Serial |
104 |
|
Permanent link to this record |
|
|
|
|
Author |
Shaklai, S.; Mimouni-Bloch, A.; Levin, M.; Friedman, J. |
|
|
Title |
Development of finger force coordination in children |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Experimental Brain Research |
Abbreviated Journal |
|
|
|
Volume |
235 |
Issue |
12 |
Pages |
3709–3720 |
|
|
Keywords |
|
|
|
Abstract |
Coordination is often observed as body parts moving together. However, when producing force with multiple fingers, the optimal coordination is not to produce similar forces with each finger, but rather for each finger to correct mistakes of other fingers. In this study, we aim to determine whether and how this skill develops in children aged 4-12 years. We measured this sort of coordination using the uncontrolled manifold hypothesis (UCM). We recorded finger forces produced by 60 typically developing children aged between 4 and 12 years in a finger-pressing task. The children controlled the height of an object on a screen by the total amount of force they produced on force sensors. We found that the synergy index, a measure of the relationship between “good” and “bad” variance, increased linearly as a function of age. This improvement was achieved by a selective reduction in “bad” variance rather than an increase in “good” variance. We did not observe differences between males and females, and the synergy index was not able to predict outcomes of upper limb behavioral tests after controlling for age. As children develop between the ages of 4 and 12 years, their ability to produce negative covariation between their finger forces improves, likely related to their improved ability to perform dexterous tasks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1432-1106 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
Shaklai2017 |
Serial |
86 |
|
Permanent link to this record |
|
|
|
|
Author |
Mimouni-Bloch, A.; Shaklai, S.; Levin, M.; Ingber, M.; Karolitsky, T.; Grunbaum, S.; Friedman, J. |
|
|
Title |
Developmental and acquired brain injury have opposite effects on finger coordination in children |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Frontiers in Human Neuroscience |
Abbreviated Journal |
Front. Hum. Neurosci. |
|
|
Volume |
17 |
Issue |
|
Pages |
1083304 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1662-5161 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
119 |
|
Permanent link to this record |
|
|
|
|
Author |
Portnoy, S.; Rosenberg, L.; Alazraki, T.; Elyakim, E.; Friedman, J. |
|
|
Title |
Differences in Muscle Activity Patterns and Graphical Product Quality in Children Copying and Tracing Activities on Horizontal or Vertical Surfaces |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Journal of Electromyography and Kinesiology |
Abbreviated Journal |
Journal of Electromyography and Kinesiology |
|
|
Volume |
25 |
Issue |
3 |
Pages |
540�547 |
|
|
Keywords |
Motor equivalence; Electromyography; Tablet; Occupational Therapy; Muscle fatigue; Motor control |
|
|
Abstract |
The observation that a given task, e.g. producing a signature, looks similar when created by different motor commands and different muscles groups is known as motor equivalence. Relatively little data exists regarding the characteristics of motor equivalence in children. In this study, we compared the level of performance when performing a tracing task and copying figures in two common postures: while sitting at a desk and while standing in front of a wall, among preschool children. In addition, we compared muscle activity patterns in both postures. Specifically, we compared the movements of 35 five- to six-year old children, recording the same movements of copying figures and path tracing on an electronic tablet in both a horizontal orientation, while sitting, and a vertical orientation, while standing. Different muscle activation patterns were observed between the postures, however no significant difference in the performance level was found, providing evidence of motor equivalence at this young age. The study presents a straightforward method of assessing motor equivalence that can be extended to other stages of development as well as motor disorders. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1050-6411 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
77 |
|
Permanent link to this record |
|
|
|
|
Author |
Friedman, J; Latash, M.L.; Zatsiorsky, V.M. |
|
|
Title |
Directional variability of the isometric force vector produced by the hand in multi-joint planar tasks |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Journal of Motor Behavior |
Abbreviated Journal |
|
|
|
Volume |
43 |
Issue |
6 |
Pages |
451-463 |
|
|
Keywords |
|
|
|
Abstract |
Numerous studies have examined control of force magnitude, but relatively little research has considered force direction control. In this study, subjects applied isometric forces to a handle and we compared within-trial variability when producing force in different directions. The standard deviation (SD) of the force parallel to the prescribed direction of force production increased linearly with the targeted force level, as did the SD of the force perpendicular to the instructed direction. In contrast, the SD of the angle of force production decreased with increased force level. In the four (of eight) instructed force directions where the endpoint force was generated due to a joint torque in only one joint (either the shoulder or elbow) the principal component axes in force space were well aligned with the prescribed direction of force production. In the other directions, the variance was approximately equal along the two force axes. The variance explained by the first principal component was significantly larger in torque space compared to the force space, and mostly corresponded to positive correlation between the joint torques. Such coordinated changes suggest that the torque variability was mainly due to the variability of the common drive to the muscles serving two joints, although this statement needs to be supported by direct studies of muscle activation in the future. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
Penn State @ write.to.jason @ |
Serial |
26 |
|
Permanent link to this record |