|
Records |
Links |
|
Author |
Raveh, E.; Portnoy, S.; Friedman, J. |
|
|
Title |
Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Human Movement Science |
Abbreviated Journal |
Hum Mov Sci |
|
|
Volume |
58 |
Issue |
|
Pages |
32-40 |
|
|
Keywords |
Myoelectric prostheses; Sensorimotor control; Upper limb amputation; Visual feedback |
|
|
Abstract |
We investigated whether adding vibrotactile feedback to a myoelectric-controlled hand, when visual feedback is disturbed, can improve performance during a functional test. For this purpose, able-bodied subjects, activating a myoelectric-controlled hand attached to their right hand performed the modified Box & Blocks test, grasping and manipulating wooden blocks over a partition. This was performed in 3 conditions, using a repeated-measures design: in full light, in a dark room where visual feedback was disturbed and no auditory feedback – one time with the addition of tactile feedback provided during object grasping and manipulation, and one time without any tactile feedback. The average time needed to transfer one block was measured, and an infrared camera was used to give information on the number of grasping errors during performance of the test. Our results show that when vibrotactile feedback was provided, performance time was reduced significantly, compared with when no vibrotactile feedback was available. Furthermore, the accuracy of grasping and manipulation was improved, reflected by significantly fewer errors during test performance. In conclusion, adding vibrotactile feedback to a myoelectric-controlled hand has positive effects on functional performance when visual feedback is disturbed. This may have applications to current myoelectric-controlled hands, as adding tactile feedback may help prosthesis users to improve their functional ability during daily life activities in different environments, particularly when limited visual feedback is available or desirable. |
|
|
Address |
Physical Therapy Department, Sackler Faculty of Medicine, Tel Aviv University, Israel. Electronic address: jason@post.tau.ac.il |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0167-9457 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29353091 |
Approved |
no |
|
|
Call Number |
|
Serial |
88 |
|
Permanent link to this record |
|
|
|
|
Author |
Friedman, Jason; Brown, Scott; Finkbeiner, Matthew |
|
|
Title |
Linking cognitive and reaching trajectories via intermittent movement control |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Journal of Mathematical Psychology |
Abbreviated Journal |
|
|
|
Volume |
57 |
Issue |
3-4 |
Pages |
140-151 |
|
|
Keywords |
Decision making; Diffusion model; Reaction times; Arm movements; Submovements |
|
|
Abstract |
Theories of decision-making have traditionally been constrained by reaction time data. A limitation of reaction time data, particularly for studying the temporal dynamics of cognitive processing, is that they index only the endpoint of the decision making process. Recently, physical reaching trajectories have been used as proxies for underlying mental trajectories through decision space. We suggest that this approach has been oversimplified: while it is possible for the motor control system to access the current state of the evidence accumulation process, this access is intermittent. Instead, we demonstrate how a model of arm movements that assumes intermittent, not continuous, access to the decision process is sufficient to describe the effects of stimulus quality and viewing time in curved reaching movements. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
70 |
|
Permanent link to this record |
|
|
|
|
Author |
Zopf, Regine; Truong, Sandra; Finkbeiner, Matthew; Friedman, Jason; Williams, Mark A |
|
|
Title |
Viewing and feeling touch modulates hand position for reaching |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Neuropsychologia |
Abbreviated Journal |
|
|
|
Volume |
49 |
Issue |
5 |
Pages |
1287–1293 |
|
|
Keywords |
|
|
|
Abstract |
Action requires knowledge of our body location in space. Here we asked if interactions with the external world prior to a reaching action influence how visual location information is used. We investigated if the temporal synchrony between viewing and feeling touch modulates the integration of visual and proprioceptive body location information for action. We manipulated the synchrony between viewing and feeling touch in the Rubber Hand Illusion paradigm prior to participants performing a ballistic reaching task to a visually specified target. When synchronous touch was given, reaching trajectories were significantly shifted compared to asynchronous touch. The direction of this shift suggests that touch influences the encoding of hand position for action. On the basis of this data and previous findings, we propose that the brain uses correlated cues from passive touch and vision to update its own position for action and experience of self-location. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
Penn State @ write.to.jason @ |
Serial |
23 |
|
Permanent link to this record |
|
|
|
|
Author |
Awasthi, Bhuvanesh; Friedman, Jason; Williams, Mark A |
|
|
Title |
Processing of low spatial frequency faces at periphery in choice reaching tasks |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Neuropsychologia |
Abbreviated Journal |
|
|
|
Volume |
49 |
Issue |
7 |
Pages |
2136-2141 |
|
|
Keywords |
|
|
|
Abstract |
Various aspects of face processing have been associated with distinct ranges of spatial frequencies. Configural processing of faces depends chiefly on low spatial frequency (LSF) information whereas high spatial frequency (HSF) supports feature based processing. However, it has also been argued that face processing has a foveal-bias (HSF channels dominate the fovea). Here we used reach trajectories as a continuous behavioral measure to study perceptual processing of faces. Experimental stimuli were LSF–HSF hybrids of male and female faces superimposed and were presented peripherally and centrally. Subject reached out to touch a specified sex and their movements were recorded. The reaching trajectories reveal that there is less effect of (interference by) LSF faces at fovea as compared to periphery while reaching to HSF targets. These results demonstrate that peripherally presented LSF information, carried chiefly by magnocellular channels, enables efficient processing of faces, possibly via a retinotectal (subcortical) pathway. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
24 |
|
Permanent link to this record |
|
|
|
|
Author |
Awasthi, Bhuvanesh; Friedman, Jason; Williams, Mark |
|
|
Title |
Faster, stronger, lateralized: Low spatial frequency information supports face processing |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Neuropsychologia |
Abbreviated Journal |
|
|
|
Volume |
49 |
Issue |
13 |
Pages |
3583-3590 |
|
|
Keywords |
|
|
|
Abstract |
Distinct visual pathways are selectively tuned for processing specific spatial frequencies. Recently, Awasthi, Friedman and Williams (2011) reported fast categorisation of faces at periphery, arguing for primacy of low spatial frequency (LSF) information in face processing. However, previous studies have also documented rapid categorization of places and natural scenes. Here, we tested if the LSF advantage is face specific or also involved in place perception. We used visually guided reaching as a continuous behavioral measure to examine the processing of LSF and high spatial frequency (HSF) hybrids, presented at the periphery. Subjects reached out and touched targets and their movements were recorded. The trajectories revealed that LSF interference was both 95 ms earlier and stronger for faces than places and was lateralized to the left visual field. The early processing of LSF information supports the assumption that faces are prioritised and provides a (neural) framework for such specialised processing. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
Penn State @ write.to.jason @ |
Serial |
25 |
|
Permanent link to this record |