toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dempsey-Jones, H.; Wesselink, D.B.; Friedman, J.; Makin, T.R. pdf  url
doi  openurl
  Title (down) Organized Toe Maps in Extreme Foot Users Type Journal Article
  Year 2019 Publication Cell Reports Abbreviated Journal Cell Reports  
  Volume 28 Issue 11 Pages 2748-2756.e4  
  Keywords  
  Abstract Although the fine-grained features of topographic maps in the somatosensory cortex can be shaped by everyday experience, it is unknown whether behavior can support the expression of somatotopic maps where they do not typically occur. Unlike the fingers, represented in all primates, individuated toe maps have only been found in non-human primates. Using 1-mm resolution fMRI, we identify organized toe maps in two individuals born without either upper limb who use their feet to substitute missing hand function and even support their profession as foot artists. We demonstrate that the ordering and structure of the artists’ toe representation mimics typical hand representation. We further reveal “hand-like” features of activity patterns, not only in the foot area but also similarly in the missing hand area. We suggest humans may have an innate capacity for forming additional topographic maps that can be expressed with appropriate experience.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-1247 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1016/j.celrep.2019.08.027 Approved no  
  Call Number Serial 99  
Permanent link to this record
 

 
Author Friedman, J.; Korman, M. pdf  url
doi  openurl
  Title (down) Offline Optimization of the Relative Timing of Movements in a Sequence Is Blocked by Retroactive Behavioral Interference Type Journal Article
  Year 2016 Publication Frontiers in Human Neuroscience Abbreviated Journal Front. Hum. Neurosci.  
  Volume 10 Issue Pages 623  
  Keywords learning; interference; consolidation; finger movements; kinematics  
  Abstract Acquisition of motor skills often involves the concatenation of single movements into sequences. Along the course of learning, sequential performance becomes progressively faster and smoother, presumably by optimization of both motor planning and motor execution. Following its encoding during training, “how-to” memory undergoes consolidation, reflecting transformations in performance and its neurobiological underpinnings over time. This offline post-training memory process is characterized by two phenomena: reduced sensitivity to interference and the emergence of delayed, typically overnight, gains in performance. Here, using a training protocol that effectively induces motor sequence memory consolidation, we tested temporal and kinematic parameters of performance within (online) and between (offline) sessions, and their sensitivity to retroactive interference. One group learned a given finger-to-thumb opposition sequence (FOS), and showed robust delayed (consolidation) gains in the number of correct sequences performed at 24 h. A second group learned an additional (interference) FOS shortly after the first and did not show delayed gains. Reduction of touch times and inter-movement intervals significantly contributed to the overall offline improvement of performance overnight. However, only the offline inter-movement interval shortening was selectively blocked by the interference experience. Velocity and amplitude, comprising movement time, also significantly changed across the consolidation period but were interference-insensitive. Moreover, they paradoxically canceled out each other. Current results suggest that shifts in the representation of the trained sequence are subserved by multiple processes: from distinct changes in kinematic characteristics of individual finger movements to high-level, temporal reorganization of the movements as a unit. Each of these processes has a distinct time course and a specific susceptibility to retroactive interference. This multiple-component view may bridge the gap in understanding the link between the behavioral changes, which define online and offline learning, and the biological mechanisms that support those changes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1662-5161 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 83  
Permanent link to this record
 

 
Author Friedman, J.; Korman, M. pdf  url
doi  openurl
  Title (down) Observation of an expert model induces a skilled movement coordination pattern in a single session of intermittent practice Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages 4609  
  Keywords  
  Abstract We tested how observation of a skilled pattern of planar movements can assist in the learning of a new motor skill, which otherwise requires rigorous long-term practice to achieve fast and smooth performance. Sixty participants performed a sequence of planar hand movements on pre-test, acquisition, post-test and 24 h post-training blocks, under 1 of 4 conditions: an observation group (OG), a slowed observation group (SOG), a random motion control group (RMCG) and a double physical training control group (DPTCG). The OG and SOG observed an expert model's right hand performing the study task intermittently throughout acquisition, RMCG observed random dots movement instead of a model. Participants in the DPTCG received extra physical practice trials instead of the visually observed trials. Kinematic analysis revealed that only in conditions with observation of an expert model there was an instant robust improvement in motor planning of the task. This step-wise improvement was not only persistent in post-training retests but was also apparently implicit and subject to further incremental improvements in movement strategy over the period of 24 hours. The rapid change in motor strategy was accompanied by a transient within-session increase in spatial error for the observation groups, but this went away by 24 h post-training. We suggest that observation of hand movements of an expert model coaligned with self-produced movements during training can significantly condense the time-course of ecologically relevant drawing/writing skill mastery.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30872661 Approved no  
  Call Number Serial 94  
Permanent link to this record
 

 
Author Raveh, E.; Portnoy, S.; Friedman, J. pdf  url
doi  openurl
  Title (down) Myoelectric Prosthesis Users Improve Performance Time and Accuracy Using Vibrotactile Feedback When Visual Feedback Is Disturbed Type Journal Article
  Year 2018 Publication Archives of Physical Medicine and Rehabilitation Abbreviated Journal Arch Phys Med Rehabil  
  Volume 99 Issue 11 Pages 2263-2270  
  Keywords Amputation; Prosthesis; Rehabilitation; Sensory feedback; Visual feedback  
  Abstract OBJECTIVE: To evaluate the effects of adding vibrotactile feedback (VTF) in myoelectric prosthesis users during performance of a functional task when visual feedback is disturbed. DESIGN: A repeated-measures design with a counter-balanced order of 3 conditions. SETTING: Laboratory setting. PARTICIPANTS: Transradial amputees using a myoelectric prosthesis with normal or corrected eyesight (N=12, median age 65+/-13y). Exclusion criteria were orthopedic or neurologic problems. INTERVENTIONS: All participants performed the modified Box and Blocks Test, grasping and manipulating 16 blocks over a partition using their myoelectric prosthesis. This was performed 3 times: in full light, in a dark room without VTF, and in a dark room with VTF. MAIN OUTCOME MEASURES: Performance time, that is, the time needed to transfer 1 block, and accuracy during performance, measured by number of empty grips, empty transitions with no block and block drops from the hand. RESULTS: Significant differences were found in all outcome measures when VTF was added, with improved performance time (4.2 vs 5.3s) and a reduced number of grasping errors (3.0 vs 6.5 empty grips, 1.5 vs 4 empty transitions, 2.0 vs 4.5 block drops). CONCLUSIONS: Adding VTF to myoelectric prosthesis users has positive effects on performance time and accuracy when visual feedback is disturbed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9993 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29935153 Approved no  
  Call Number Serial 96  
Permanent link to this record
 

 
Author Cantergi, D.; Awasthi, B.; Friedman, J. pdf  url
doi  openurl
  Title (down) Moving objects by imagination? Amount of finger movement and pendulum length determine success in the Chevreul pendulum illusion Type Journal Article
  Year 2021 Publication Human Movement Science Abbreviated Journal Human Movement Science  
  Volume 80 Issue Pages 102879  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9457 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 111  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: