toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (down)
Author Noy, L.; Weiser, N.; Friedman, J. pdf  url
doi  openurl
  Title Synchrony in Joint Action Is Directed by Each Participant's Motor Control System Type Journal Article
  Year 2017 Publication Frontiers in Psychology Abbreviated Journal Front. Psychol.  
  Volume 8 Issue Pages 531  
  Keywords visuomotor tracking; mirror game; intermittent control; joint action; motor control  
  Abstract In this work, we ask how the probability of achieving synchrony in joint action is affected by the choice of motion parameters of each individual. We use the mirror game paradigm to study how changes in leader�s motion parameters, specifically frequency and peak velocity, affect the probability of entering the state of co-confidence (CC) motion: a dyadic state of synchronized, smooth and co-predictive motions. In order to systematically study this question, we used a one-person version of the mirror game, where the participant mirrored piece-wise rhythmic movements produced by a computer on a graphics tablet. We systematically varied the frequency and peak velocity of the movements to determine how these parameters affect the likelihood of synchronized joint action. To assess synchrony in the mirror game we used the previously developed marker of co-confident (CC) motions: smooth, jitter-less and synchronized motions indicative of co-predicative control. We found that when mirroring movements with low frequencies (i.e., long duration movements), the participants never showed CC, and as the frequency of the stimuli increased, the probability of observing CC also increased. This finding is discussed in the framework of motor control studies showing an upper limit on the duration of smooth motion. We confirmed the relationship between motion parameters and the probability to perform CC with three sets of data of open-ended two-player mirror games. These findings demonstrate that when performing movements together, there are optimal movement frequencies to use in order to maximize the possibility of entering a state of synchronized joint action. It also shows that the ability to perform synchronized joint action is constrained by the properties of our motor control systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1664-1078 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 84  
Permanent link to this record
 

 
Author Friedman, J.; Korman, M. pdf  url
doi  openurl
  Title Offline Optimization of the Relative Timing of Movements in a Sequence Is Blocked by Retroactive Behavioral Interference Type Journal Article
  Year 2016 Publication Frontiers in Human Neuroscience Abbreviated Journal Front. Hum. Neurosci.  
  Volume 10 Issue Pages 623  
  Keywords learning; interference; consolidation; finger movements; kinematics  
  Abstract Acquisition of motor skills often involves the concatenation of single movements into sequences. Along the course of learning, sequential performance becomes progressively faster and smoother, presumably by optimization of both motor planning and motor execution. Following its encoding during training, “how-to” memory undergoes consolidation, reflecting transformations in performance and its neurobiological underpinnings over time. This offline post-training memory process is characterized by two phenomena: reduced sensitivity to interference and the emergence of delayed, typically overnight, gains in performance. Here, using a training protocol that effectively induces motor sequence memory consolidation, we tested temporal and kinematic parameters of performance within (online) and between (offline) sessions, and their sensitivity to retroactive interference. One group learned a given finger-to-thumb opposition sequence (FOS), and showed robust delayed (consolidation) gains in the number of correct sequences performed at 24 h. A second group learned an additional (interference) FOS shortly after the first and did not show delayed gains. Reduction of touch times and inter-movement intervals significantly contributed to the overall offline improvement of performance overnight. However, only the offline inter-movement interval shortening was selectively blocked by the interference experience. Velocity and amplitude, comprising movement time, also significantly changed across the consolidation period but were interference-insensitive. Moreover, they paradoxically canceled out each other. Current results suggest that shifts in the representation of the trained sequence are subserved by multiple processes: from distinct changes in kinematic characteristics of individual finger movements to high-level, temporal reorganization of the movements as a unit. Each of these processes has a distinct time course and a specific susceptibility to retroactive interference. This multiple-component view may bridge the gap in understanding the link between the behavioral changes, which define online and offline learning, and the biological mechanisms that support those changes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1662-5161 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 83  
Permanent link to this record
 

 
Author Zopf, R.; Friedman, J.; Williams, M.A. pdf  url
doi  openurl
  Title The plausibility of visual information for hand ownership modulates multisensory synchrony perception Type Journal Article
  Year 2015 Publication Abbreviated Journal Experimental Brain Research  
  Volume 233 Issue 8 Pages 2311-2321  
  Keywords Multisensory perception; Temporal synchrony perception; Virtual hand; Body representations; Body ownership; Sensory predictions  
  Abstract We are frequently changing the position of our bodies and body parts within complex environments. How does the brain keep track of one’s own body? Current models of body ownership state that visual body ownership cues such as viewed object form and orientation are combined with multisensory information to correctly identify one’s own body, estimate its current location and evoke an experience of body ownership. Within this framework, it may be possible that the brain relies on a separate perceptual analysis of body ownership cues (e.g. form, orientation, multisensory synchrony). Alternatively, these cues may interact in earlier stages of perceptual processing—visually derived body form and orientation cues may, for example, directly modulate temporal synchrony perception. The aim of the present study was to distinguish between these two alternatives. We employed a virtual hand set-up and psychophysical methods. In a two-interval force-choice task, participants were asked to detect temporal delays between executed index finger movements and observed movements. We found that body-specifying cues interact in perceptual processing. Specifically, we show that plausible visual information (both form and orientation) for one’s own body led to significantly better detection performance for small multisensory asynchronies compared to implausible visual information. We suggest that this perceptual modulation when visual information plausible for one’s own body is present is a consequence of body-specific sensory predictions.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-4819 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 78  
Permanent link to this record
 

 
Author Latash, M.L., Friedman, J., Kim, S.W., Feldman, A.G., Zatsiorsky, V.M. pdf  url
openurl 
  Title Prehension Synergies and Control with Referent Hand Configurations Type Journal Article
  Year 2010 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res  
  Volume 202 Issue 1 Pages 213-229  
  Keywords  
  Abstract We used the framework of the equilibrium-point hypothesis (in its updated form based on the notion of referent configuration) to investigate the multi-digit synergies at two levels of a hypothetical hierarchy involved in prehensile actions. Synergies were analyzed at the thumb-virtual finger level (virtual finger is an imaginary digit with the mechanical action equivalent to that of the four actual fingers) and at the individual finger level. The subjects performed very quick vertical movements of a handle into a target. A load could be attached off-center to provide a pronation or supination torque. In a few trials, the handle was unexpectedly fixed to the table and the digits slipped off the sensors. In such trials, the hand stopped at a higher vertical position and rotated into pronation or supination depending on the expected torque. The aperture showed non-monotonic changes with a large, fast decrease and further increase, ending up with a smaller distance between the thumb and the fingers as compared to unperturbed trials. Multi-digit synergies were quantified using indices of co-variation between digit forces and moments of force across unperturbed trials. Prior to the lifting action, high synergy indices were observed at the individual finger level while modest indices were observed at the thumb-virtual finger level. During the lifting action, the synergies at the individual finger level disappeared while the synergy indices became higher at the thumb-virtual finger level. The results support the basic premise that, within a given task, setting a referent configuration may be described with a few referent values of variables that influence the equilibrium state, to which the system is attracted. Moreover, the referent configuration hypothesis can help interpret the data related to the trade-off between synergies at different hierarchical levels.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Penn State @ write.to.jason @ Serial 19  
Permanent link to this record
 

 
Author Portnoy, S.; Mimouni-Bloch, A.; Rosenberg, L.; Offek, H.; Berman, T.; Kochavi, M.; Orman, G.; Friedman, J. pdf  url
doi  openurl
  Title Graphical Product Quality and Muscle Activity in Children With Mild Disabilities Drawing on a Horizontally or Vertically Oriented Tablet Type Journal Article
  Year 2018 Publication American Journal of Occupational Therapy Abbreviated Journal Am J Occup Ther  
  Volume 72 Issue 6 Pages 1-7  
  Keywords  
  Abstract OBJECTIVE. We compared performance level and muscle activity patterns during shape copying and tracing in two positions, while sitting at a desk and while standing in front of a wall, between typically developing (TD) preschool children and children with mild disabilities (MD).

METHOD. Twenty-two TD children (8 boys, 14 girls; mean [M] age 5 5.2 yr, standard deviation [SD] 5 0.1) and 13 children with MD (9 boys, 4 girls; M age 5 4.9 yr, SD 5 0.5) participated in this study.

RESULTS. The children performed faster and smoother movements when copying shapes on the vertical surface, with no reduction of accuracy, than on the horizontal surface. Children with MD exerted their upper trapezius while performing the short tasks on the vertical surface compared with their muscle activity on the horizontal surface.

CONCLUSION. Incorporating short copying or drawing tasks on a vertical surface may increase the control of proximal muscles and ease graphomotor performance in children with MD.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-9490 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Penn State @ write.to.jason @ Serial 91  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: