toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shaklai, S.; Mimouni-Bloch, A.; Levin, M.; Friedman, J. pdf  url
doi  openurl
  Title Development of finger force coordination in children Type Journal Article
  Year 2017 Publication Experimental Brain Research Abbreviated Journal  
  Volume (up) 235 Issue 12 Pages 37093720  
  Keywords  
  Abstract Coordination is often observed as body parts moving together. However, when producing force with multiple fingers, the optimal coordination is not to produce similar forces with each finger, but rather for each finger to correct mistakes of other fingers. In this study, we aim to determine whether and how this skill develops in children aged 4-12 years. We measured this sort of coordination using the uncontrolled manifold hypothesis (UCM). We recorded finger forces produced by 60 typically developing children aged between 4 and 12 years in a finger-pressing task. The children controlled the height of an object on a screen by the total amount of force they produced on force sensors. We found that the synergy index, a measure of the relationship between “good” and “bad” variance, increased linearly as a function of age. This improvement was achieved by a selective reduction in “bad” variance rather than an increase in “good” variance. We did not observe differences between males and females, and the synergy index was not able to predict outcomes of upper limb behavioral tests after controlling for age. As children develop between the ages of 4 and 12 years, their ability to produce negative covariation between their finger forces improves, likely related to their improved ability to perform dexterous tasks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-1106 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Shaklai2017 Serial 86  
Permanent link to this record
 

 
Author Frenkel-Toledo, S.; Yamanaka, J.; Friedman, J.; Feldman, A.G.; Levin, M.F. pdf  url
doi  openurl
  Title Referent control of anticipatory grip force during reaching in stroke: an experimental and modeling study Type Journal Article
  Year 2019 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res  
  Volume (up) 237 Issue 7 Pages 1655-1672  
  Keywords Anticipatory grip force; Referent control; Stroke  
  Abstract To evaluate normal and impaired control of anticipatory grip force (GF) modulation, we compared GF production during horizontal arm movements in healthy and post-stroke subjects, and, based on a physiologically feasible dynamic model, determined referent control variables underlying the GF-arm motion coordination in each group. 63% of 13 healthy and 48% of 13 stroke subjects produced low sustained initial force (< 10 N) and increased GF prior to arm movement. Movement-related GF increases were higher during fast compared to self-paced arm extension movements only in the healthy group. Differences in the patterns of anticipatory GF increases before the arm movement onset between groups occurred during fast extension arm movement only. In the stroke group, longer delays between the onset of GF change and elbow motion were related to clinical upper limb deficits. Simulations showed that GFs could emerge from the difference between the actual and the referent hand aperture (Ra) specified by the CNS. Similarly, arm movement could result from changes in the referent elbow position (Re) and could be affected by the co-activation (C) command. A subgroup of stroke subjects, who increased GF before arm movement, could specify different patterns of the referent variables while reproducing the healthy typical pattern of GF-arm coordination. Stroke subjects, who increased GF after arm movement onset, also used different referent strategies than controls. Thus, altered anticipatory GF behavior in stroke subjects may be explained by deficits in referent control.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-4819 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30976821 Approved no  
  Call Number Serial 98  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: