|
Records |
Links |
|
Author |
Liebermann, D.G.; Biess, A.; Friedman, J.; Gielen, C.C.A.M.; Flash, T. |
|
|
Title |
Intrinsic joint kinematic planning. I: reassessing the Listing's law constraint in the control of three-dimensional arm movements |
Type |
Journal Article |
|
Year |
2006 |
Publication |
Experimental Brain Research |
Abbreviated Journal |
Exp Brain Res |
|
|
Volume |
171 |
Issue |
2 |
Pages |
139-154 |
|
|
Keywords |
Adolescent; Adult; Analysis of Variance; *Arm; Biomechanics; Eye Movements/*physiology; Humans; Joints/*physiology; Male; Movement/*physiology; *Musculoskeletal System; Orientation/*physiology; Posture |
|
|
Abstract |
This study tested the validity of the assumption that intrinsic kinematic constraints, such as Listing's law, can account for the geometric features of three-dimensional arm movements. In principle, if the arm joints follow a Listing's constraint, the hand paths may be predicted. Four individuals performed 'extended arm', 'radial', 'frontal plane', and 'random mixed' movements to visual targets to test Listing's law assumption. Three-dimensional rotation vectors of the upper arm and forearm were calculated from three-dimensional marker data. Data fitting techniques were used to test Donders' and Listing's laws. The coefficient values obtained from fitting rotation vectors to the surfaces described by a second-order equation were analyzed. The results showed that the coefficients that represent curvature and twist of the surfaces were often not significantly different from zero, particularly not during randomly mixed and extended arm movements. These coefficients for forearm rotations were larger compared to those for the upper arm segment rotations. The mean thickness of the rotation surfaces ranged between approximately 1.7 degrees and 4.7 degrees for the rotation vectors of the upper arm segment and approximately 2.6 degrees and 7.5 degrees for those of the forearm. During frontal plane movements, forearm rotations showed large twist scores while upper arm segment rotations showed large curvatures, although the thickness of the surfaces remained low. The curvatures, but not the thicknesses of the surfaces, were larger for large versus small amplitude radial movements. In conclusion, when examining the surfaces obtained for the different movement types, the rotation vectors may lie within manifolds that are anywhere between curved or twisted manifolds. However, a two-dimensional thick surface may roughly represent a global arm constraint. Our findings suggest that Listing's law is implemented for some types of arm movement, such as pointing to targets with the extended arm and during radial reaching movements. |
|
|
Address |
Department of Physical Therapy, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Ramat Aviv, Israel. dlieberm@post.tau.ac.il |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0014-4819 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:16341526 |
Approved |
no |
|
|
Call Number |
Penn State @ write.to.jason @ |
Serial |
18 |
|
Permanent link to this record |
|
|
|
|
Author |
Wilf, M.; Korakin, A.; Bahat, Y.; Koren, O.; Galor, N.; Dagan, O.; Wright, W.G.; Friedman, J.; Plotnik, M. |
|
|
Title |
Using virtual reality-based neurocognitive testing and eye tracking to study naturalistic cognitive-motor performance |
Type |
Journal Article |
|
Year |
2024 |
Publication |
Neuropsychologia |
Abbreviated Journal |
Neuropsychologia |
|
|
Volume |
194 |
Issue |
|
Pages |
108744 |
|
|
Keywords |
Humans; Aged; *Eye-Tracking Technology; Cognition; Executive Function; *Virtual Reality; Aging; Color trails test; Fall risk; Hand kinematics; Pupil; Virtual reality |
|
|
Abstract |
Natural human behavior arises from continuous interactions between the cognitive and motor domains. However, assessments of cognitive abilities are typically conducted using pen and paper tests, i.e., in isolation from “real life” cognitive-motor behavior and in artificial contexts. In the current study, we aimed to assess cognitive-motor task performance in a more naturalistic setting while recording multiple motor and eye tracking signals. Specifically, we aimed to (i) delineate the contribution of cognitive and motor components to overall task performance and (ii) probe for a link between cognitive-motor performance and pupil size. To that end, we used a virtual reality (VR) adaptation of a well-established neurocognitive test for executive functions, the 'Color Trails Test' (CTT). The VR-CTT involves performing 3D reaching movements to follow a trail of numbered targets. To tease apart the cognitive and motor components of task performance, we included two additional conditions: a condition where participants only used their eyes to perform the CTT task (using an eye tracking device), incurring reduced motor demands, and a condition where participants manually tracked visually-cued targets without numbers on them, incurring reduced cognitive demands. Our results from a group of 30 older adults (>65) showed that reducing cognitive demands shortened completion times more extensively than reducing motor demands. Conditions with higher cognitive demands had longer target search time, as well as decreased movement execution velocity and head-hand coordination. We found larger pupil sizes in the more cognitively demanding conditions, and an inverse correlation between pupil size and completion times across individuals in all task conditions. Lastly, we found a possible link between VR-CTT performance measures and clinical signatures of participants (fallers versus non-fallers). In summary, performance and pupil parameters were mainly dependent on task cognitive load, while maintaining systematic interindividual differences. We suggest that this paradigm opens the possibility for more detailed profiling of individual cognitive-motor performance capabilities in older adults and other at-risk populations. |
|
|
Address |
Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Israel; Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. Electronic address: Meir.Plotnik@sheba.health.gov.il |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0028-3932 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:38072162 |
Approved |
no |
|
|
Call Number |
|
Serial |
123 |
|
Permanent link to this record |
|
|
|
|
Author |
Latash, M.L., Friedman, J., Kim, S.W., Feldman, A.G., Zatsiorsky, V.M. |
|
|
Title |
Prehension Synergies and Control with Referent Hand Configurations |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Experimental Brain Research |
Abbreviated Journal |
Exp Brain Res |
|
|
Volume |
202 |
Issue |
1 |
Pages |
213-229 |
|
|
Keywords |
|
|
|
Abstract |
We used the framework of the equilibrium-point hypothesis (in its updated form based on the notion of referent configuration) to investigate the multi-digit synergies at two levels of a hypothetical hierarchy involved in prehensile actions. Synergies were analyzed at the thumb-virtual finger level (virtual finger is an imaginary digit with the mechanical action equivalent to that of the four actual fingers) and at the individual finger level. The subjects performed very quick vertical movements of a handle into a target. A load could be attached off-center to provide a pronation or supination torque. In a few trials, the handle was unexpectedly fixed to the table and the digits slipped off the sensors. In such trials, the hand stopped at a higher vertical position and rotated into pronation or supination depending on the expected torque. The aperture showed non-monotonic changes with a large, fast decrease and further increase, ending up with a smaller distance between the thumb and the fingers as compared to unperturbed trials. Multi-digit synergies were quantified using indices of co-variation between digit forces and moments of force across unperturbed trials. Prior to the lifting action, high synergy indices were observed at the individual finger level while modest indices were observed at the thumb-virtual finger level. During the lifting action, the synergies at the individual finger level disappeared while the synergy indices became higher at the thumb-virtual finger level. The results support the basic premise that, within a given task, setting a referent configuration may be described with a few referent values of variables that influence the equilibrium state, to which the system is attracted. Moreover, the referent configuration hypothesis can help interpret the data related to the trade-off between synergies at different hierarchical levels. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
Penn State @ write.to.jason @ |
Serial |
19 |
|
Permanent link to this record |
|
|
|
|
Author |
Noy, L.; Alon, U.; Friedman, J. |
|
|
Title |
Corrective jitter motion shows similar individual frequencies for the arm and the finger |
Type |
Journal Article |
|
Year |
2015 |
Publication |
Experimental Brain Research |
Abbreviated Journal |
Exp Brain Res |
|
|
Volume |
233 |
Issue |
4 |
Pages |
1307-1320 |
|
|
Keywords |
|
|
|
Abstract |
A characteristic of visuomotor tracking of non-regular oscillating stimuli are high-frequency jittery corrective motions, oscillating around the tracked stimuli. However, the properties of these corrective jitter responses are not well understood. For example, does the jitter response show an idiosyncratic signature? What is the relationship between stimuli properties and jitter properties? Is the jitter response similar across effectors with different inertial properties? To answer these questions, we measured participants' jitter frequencies in two tracking tasks in the arm and the finger. Thirty participants tracked the same set of eleven non-regular oscillating stimuli, vertically moving on a screen, once with forward-backward arm movements (holding a tablet stylus) and once with upward-downward index finger movements (with a motion tracker attached). Participants' jitter frequencies and tracking errors varied systematically as a function of stimuli frequency and amplitude. Additionally, there were clear individual differences in average jitter frequencies between participants, ranging from 0.7 to 1.15 Hz, similar to values reported previously. A comparison of individual jitter frequencies in the two tasks showed a strong correlation between participants' jitter frequencies in the finger and the arm, despite the very different inertial properties of the two effectors. This result suggests that the corrective jitter response stems from common neural processes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0014-4819 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:25630905 |
Approved |
no |
|
|
Call Number |
|
Serial |
76 |
|
Permanent link to this record |
|
|
|
|
Author |
Zopf, R.; Friedman, J.; Williams, M.A. |
|
|
Title |
The plausibility of visual information for hand ownership modulates multisensory synchrony perception |
Type |
Journal Article |
|
Year |
2015 |
Publication |
|
Abbreviated Journal |
Experimental Brain Research |
|
|
Volume |
233 |
Issue |
8 |
Pages |
2311-2321 |
|
|
Keywords |
Multisensory perception; Temporal synchrony perception; Virtual hand; Body representations; Body ownership; Sensory predictions |
|
|
Abstract |
We are frequently changing the position of our bodies and body parts within complex environments. How does the brain keep track of one’s own body? Current models of body ownership state that visual body ownership cues such as viewed object form and orientation are combined with multisensory information to correctly identify one’s own body, estimate its current location and evoke an experience of body ownership. Within this framework, it may be possible that the brain relies on a separate perceptual analysis of body ownership cues (e.g. form, orientation, multisensory synchrony). Alternatively, these cues may interact in earlier stages of perceptual processing—visually derived body form and orientation cues may, for example, directly modulate temporal synchrony perception. The aim of the present study was to distinguish between these two alternatives. We employed a virtual hand set-up and psychophysical methods. In a two-interval force-choice task, participants were asked to detect temporal delays between executed index finger movements and observed movements. We found that body-specifying cues interact in perceptual processing. Specifically, we show that plausible visual information (both form and orientation) for one’s own body led to significantly better detection performance for small multisensory asynchronies compared to implausible visual information. We suggest that this perceptual modulation when visual information plausible for one’s own body is present is a consequence of body-specific sensory predictions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0014-4819 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
78 |
|
Permanent link to this record |