toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Krasovsky, T.; Weiss, P.L.; Zuckerman, O.; Bar, A.; Keren-Capelovitch, T.; Friedman, J. pdf  url
doi  openurl
  Title DataSpoon: Validation of an Instrumented Spoon for Assessment of Self-Feeding Type Journal Article
  Year 2020 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume (up) 20 Issue 7 Pages  
  Keywords concurrent validity; feasibility; kinematics; outcome assessment; rehabilitation  
  Abstract Clinically feasible assessment of self-feeding is important for adults and children with motor impairments such as stroke or cerebral palsy. However, no validated assessment tool for self-feeding kinematics exists. This work presents an initial validation of an instrumented spoon (DataSpoon) developed as an evaluation tool for self-feeding kinematics. Ten young, healthy adults (three male; age 27.2 +/- 6.6 years) used DataSpoon at three movement speeds (slow, comfortable, fast) and with three different grips: “natural”, power and rotated power grip. Movement kinematics were recorded concurrently using DataSpoon and a magnetic motion capture system (trakSTAR). Eating events were automatically identified for both systems and kinematic measures were extracted from yaw, pitch and roll (YPR) data as well as from acceleration and tangential velocity profiles. Two-way, mixed model Intraclass correlation coefficients (ICC) and 95% limits of agreement (LOA) were computed to determine agreement between the systems for each kinematic variable. Most variables demonstrated fair to excellent agreement. Agreement for measures of duration, pitch and roll exceeded 0.8 (excellent agreement) for >80% of speed and grip conditions, whereas lower agreement (ICC < 0.46) was measured for tangential velocity and acceleration. A bias of 0.01-0.07 s (95% LOA [-0.54, 0.53] to [-0.63, 0.48]) was calculated for measures of duration. DataSpoon enables automatic detection of self-feeding using simple, affordable movement sensors. Using movement kinematics, variables associated with self-feeding can be identified and aid clinical reasoning for adults and children with motor impairments.  
  Address Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32283624; PMCID:PMC7180859 Approved no  
  Call Number Serial 104  
Permanent link to this record
 

 
Author Portnoy, S.; Rosenberg, L.; Alazraki, T.; Elyakim, E.; Friedman, J. pdf  url
doi  openurl
  Title Differences in Muscle Activity Patterns and Graphical Product Quality in Children Copying and Tracing Activities on Horizontal or Vertical Surfaces Type Journal Article
  Year 2015 Publication Journal of Electromyography and Kinesiology Abbreviated Journal Journal of Electromyography and Kinesiology  
  Volume (up) 25 Issue 3 Pages 540&#65533;547  
  Keywords Motor equivalence; Electromyography; Tablet; Occupational Therapy; Muscle fatigue; Motor control  
  Abstract The observation that a given task, e.g. producing a signature, looks similar when created by different motor commands and different muscles groups is known as motor equivalence. Relatively little data exists regarding the characteristics of motor equivalence in children. In this study, we compared the level of performance when performing a tracing task and copying figures in two common postures: while sitting at a desk and while standing in front of a wall, among preschool children. In addition, we compared muscle activity patterns in both postures. Specifically, we compared the movements of 35 five- to six-year old children, recording the same movements of copying figures and path tracing on an electronic tablet in both a horizontal orientation, while sitting, and a vertical orientation, while standing. Different muscle activation patterns were observed between the postures, however no significant difference in the performance level was found, providing evidence of motor equivalence at this young age. The study presents a straightforward method of assessing motor equivalence that can be extended to other stages of development as well as motor disorders.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-6411 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 77  
Permanent link to this record
 

 
Author Dempsey-Jones, H.; Wesselink, D.B.; Friedman, J.; Makin, T.R. pdf  url
doi  openurl
  Title Organized Toe Maps in Extreme Foot Users Type Journal Article
  Year 2019 Publication Cell Reports Abbreviated Journal Cell Reports  
  Volume (up) 28 Issue 11 Pages 2748-2756.e4  
  Keywords  
  Abstract Although the fine-grained features of topographic maps in the somatosensory cortex can be shaped by everyday experience, it is unknown whether behavior can support the expression of somatotopic maps where they do not typically occur. Unlike the fingers, represented in all primates, individuated toe maps have only been found in non-human primates. Using 1-mm resolution fMRI, we identify organized toe maps in two individuals born without either upper limb who use their feet to substitute missing hand function and even support their profession as foot artists. We demonstrate that the ordering and structure of the artists’ toe representation mimics typical hand representation. We further reveal “hand-like” features of activity patterns, not only in the foot area but also similarly in the missing hand area. We suggest humans may have an innate capacity for forming additional topographic maps that can be expressed with appropriate experience.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2211-1247 ISBN Medium  
  Area Expedition Conference  
  Notes doi: 10.1016/j.celrep.2019.08.027 Approved no  
  Call Number Serial 99  
Permanent link to this record
 

 
Author Park, J.; Pazin, N.; Friedman, J.; Zatsiorsky, V.M.; Latash, M.L. pdf  url
doi  openurl
  Title Mechanical properties of the human hand digits: Age-related differences Type Journal Article
  Year 2014 Publication Clinical Biomechanics Abbreviated Journal  
  Volume (up) 29 Issue 2 Pages 129–137  
  Keywords hand; aging; friction; apparent stiffness; damping  
  Abstract Background

Mechanical properties of human digits may have significant implications for the hand function. We quantified several mechanical characteristics of individual digits in young and older adults.

Methods

Digit tip friction was measured at several normal force values using a method of induced relative motion between the digit tip and the object surface. A modified quick-release paradigm was used to estimate digit apparent stiffness, damping, and inertial parameters. The subjects grasped a vertical handle instrumented with force/moment sensors using a prismatic grasp with four digits; the handle was fixed to the table. Unexpectedly, one of the sensors yielded leading to a quick displacement of the corresponding digit. A second-order, linear model was used to fit the force/displacement data.

Findings

Friction of the digit pads was significantly lower in older adults. The apparent stiffness coefficient values were higher while the damping coefficients were lower in older adults leading to lower damping ratio. The damping ratio was above unity for most data in young adults and below unity for older adults. Quick release of a digit led to force changes in other digits of the hand, likely due to inertial hand properties. These phenomena of “mechanical enslaving” were smaller in older adults although no significant difference was found in the inertial parameter in the two groups.

Interpretations

The decreased friction and damping ratio present challenges for the control of everyday prehensile tasks. They may lead to excessive digit forces and low stability of the grasped object.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-0033 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 73  
Permanent link to this record
 

 
Author Krasovsky, T.; Keren-Capelovitch, T.; Friedman, J.; Weiss, P.L. pdf  url
doi  openurl
  Title Self-feeding kinematics in an ecological setting: typically developing children and children with cerebral palsy Type Journal Article
  Year 2021 Publication IEEE Transactions on Neural Systems and Rehabilitation Engineering : a Publication of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal IEEE Trans Neural Syst Rehabil Eng  
  Volume (up) 29 Issue Pages 1462-1469  
  Keywords  
  Abstract Assessment of self-feeding kinematics is seldom performed in an ecological setting. In preparation for development of an instrumented spoon for measurement of self-feeding in children with cerebral palsy (CP), the current work aimed to evaluate upper extremity kinematics of self-feeding in young children with typical development (TD) and a small, age-matched group of children with CP in a familiar setting, while eating with a spoon. METHODS: Sixty-five TD participants and six children diagnosed with spastic CP, aged 3-9 years, fed themselves while feeding was measured using miniature three-dimensional motion capture sensors (trakStar). Kinematic variables associated with different phases of self-feeding cycle (movement time, curvature, time to peak velocity and smoothness) were compared across age-groups in the TD sample and between TD children and those with CP. RESULTS: Significant between-age group differences were identified in movement times, time to peak velocity and curvature. Children with CP demonstrated slower, less smooth self-feeding movements, potentially related to activity limitations. CONCLUSIONS: The identified kinematic variables form a basis for implementation of self-feeding performance assessment in children of different ages, including those with CP, which can be deployed via an instrumented spoon.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1534-4320 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:34280104 Approved no  
  Call Number Serial 110  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: