toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bezalel, G.; Nachoum Arad, G.; Plotnik, M.; Friedman, J. pdf  url
doi  openurl
  Title Voluntary step execution in patients with knee osteoarthritis: Symptomatic vs. non-symptomatic legs Type Journal Article
  Year 2021 Publication Gait & Posture Abbreviated Journal Gait Posture  
  Volume (up) 83 Issue Pages 60-66  
  Keywords Accidental falls; Gait; Knee; Osteoarthritis; Voluntary step  
  Abstract BACKGROUND: Individuals with osteoarthritis fall at a greater rate than the general population, likely as a result of weakness, pain, movement limitations, and a decline in balance. Due to the high prevalence of osteoarthritis in the population, understanding the mechanisms leading to greater fall risk is an important issue to better understand. RESEARCH QUESTION: What is the influence of unilateral knee osteoarthritis on the characteristics of performing a voluntary step (i.e., similar to that performed to avoid a fall after a perturbation), compared to healthy age-matched controls? METHODS: Case-control study performed in a Health maintenance organization physical therapy clinic. The research group consisted of a referred sample of 21 patients with unilateral knee osteoarthritis. The control group consisted of 22 age-matched healthy individuals. All participants were over 65 years of age. Participants were excluded if they had a surgical procedure to back or lower limb within one year before testing, oncological or neurological disease or a deficit in tactile sense. Movements were performed with and without dual tasking. MEASUREMENTS: Duration of the initiation phase (cue to step initiation), preparatory phase (step initiation to foot off) and swing phase (foot off to foot contact). RESULTS: In the preparatory phase and swing phase, the osteoarthritis group moved more slowly than the control group, and these differences were larger for forward compared to backward movements. Dual-tasking slowed responses in the pre-movement initiation stage across groups. SIGNIFICANCE: The differences in basic parameters, and the slower movements in the osteoarthritis group, are consistent with known features of osteoarthritis, being a disease commonly regarded as primarily “mechanical”, and are likely to increase fall risk. These response deficits suggest we should take advantage of advanced rehabilitation techniques, including cognitive loading, to help prevent falls in older adults with osteoarthritis.  
  Address Dept. Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. Electronic address: jason@tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0966-6362 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:33080457 Approved no  
  Call Number Serial 107  
Permanent link to this record
 

 
Author Salzer, Y.; Friedman, J. pdf  url
doi  openurl
  Title Reaching trajectories unravel modality-dependent temporal dynamics of the automatic process in the Simon task: a model-based approach Type Journal Article
  Year 2020 Publication Psychological Research Abbreviated Journal Psychol Res  
  Volume (up) 84 Issue 6 Pages 1700-1713  
  Keywords  
  Abstract The Simon effect represents a phenomenon in which the location of the stimuli affects the speed and accuracy of the response, despite being irrelevant for the task demands. This is believed to be due to an automatic activation of a response corresponding to the location of the stimuli, which conflicts with the controlled decision process based on relevant stimuli features. Previously, differences in the nature of the Simon effect (i.e., the pattern of change of the effect across the distribution of response times) between visual and somatosensory stimuli were reported. We hypothesize that the temporal dynamics of visual and somatosensory automatic and controlled processes vary, thus driving the reported behavioral differences. While most studies have used response times to study the underlying mechanisms involved, in this study we had participants reach out to touch the targets and recorded their arm movements using a motion capture system. Importantly, the participants started their movements before a final decision was made. In this way, we could analyze the movements to gain insights into the competition between the automatic and controlled processes. We used this technique to describe the results in terms of a model assuming automatic activation due to location-based evidence, followed by inhibition. We found that for the somatosensory Simon effect, the decay of the automatic process is significantly slower than for the visual Simon effect, suggesting quantitative differences in this automatic process between the visual and somatosensory modalities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0340-0727 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30980236 Approved no  
  Call Number Serial 97  
Permanent link to this record
 

 
Author Raveh, E.; Friedman, J.; Portnoy, S. pdf  url
doi  openurl
  Title Evaluation of the effects of adding vibrotactile feedback to myoelectric prosthesis users on performance and visual attention in a dual-task paradigm Type Journal Article
  Year 2018 Publication Clinical Rehabilitation Abbreviated Journal Clin Rehabil  
  Volume (up) 99 Issue 11 Pages 2263-2270  
  Keywords  
  Abstract Objective: To evaluate the effects of adding vibrotactile feedback to myoelectric prosthesis users on the performance time and visual attention in a dual-task paradigm.

Design: A repeated-measures design with a counterbalanced order of two conditions.

Setting: Laboratory setting.

Subjects: Transradial amputees using a myoelectric prosthesis with normal or corrected eyesight (N=12, median age=65 ± 13 years). Exclusion criteria were orthopedic or neurologic problems.

Interventions: Subjects performed grasping tasks with their prosthesis, while controlling a virtual car on a road with their intact hand. The dual task was performed twice: with and without vibrotactile feedback.

Main measures: Performance time of each of the grasping tasks and gaze behavior, measured by the number of times the subjects shifted their gaze toward their hand, the relative time they applied their attention to the screen, and percentage of error in the secondary task.

Results: The mean performance time was significantly shorter (P=0.024) when using vibrotactile feedback (93.2 ± 9.6 seconds) compared with the performance time measured when vibrotactile feedback was not available (107.8 ± 20.3seconds). No significant differences were found between the two conditions in the number of times the gaze shifted from the screen to the hand, in the time the subjects applied their attention to the screen, and in the time the virtual car was off-road, as a percentage of the total game time

(51.4 ± 15.7 and 50.2 ± 19.5, respectively).

Conclusion: Adding vibrotactile feedback improved performance time during grasping in a dual-task paradigm. Prosthesis users may use vibrotactile feedback to perform better during daily tasks, when multiple cognitive demands are present.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0269-2155 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Penn State @ write.to.jason @ Serial 89  
Permanent link to this record
 

 
Author Raveh, E.; Portnoy, S.; Friedman, J. pdf  url
doi  openurl
  Title Myoelectric Prosthesis Users Improve Performance Time and Accuracy Using Vibrotactile Feedback When Visual Feedback Is Disturbed Type Journal Article
  Year 2018 Publication Archives of Physical Medicine and Rehabilitation Abbreviated Journal Arch Phys Med Rehabil  
  Volume (up) 99 Issue 11 Pages 2263-2270  
  Keywords Amputation; Prosthesis; Rehabilitation; Sensory feedback; Visual feedback  
  Abstract OBJECTIVE: To evaluate the effects of adding vibrotactile feedback (VTF) in myoelectric prosthesis users during performance of a functional task when visual feedback is disturbed. DESIGN: A repeated-measures design with a counter-balanced order of 3 conditions. SETTING: Laboratory setting. PARTICIPANTS: Transradial amputees using a myoelectric prosthesis with normal or corrected eyesight (N=12, median age 65+/-13y). Exclusion criteria were orthopedic or neurologic problems. INTERVENTIONS: All participants performed the modified Box and Blocks Test, grasping and manipulating 16 blocks over a partition using their myoelectric prosthesis. This was performed 3 times: in full light, in a dark room without VTF, and in a dark room with VTF. MAIN OUTCOME MEASURES: Performance time, that is, the time needed to transfer 1 block, and accuracy during performance, measured by number of empty grips, empty transitions with no block and block drops from the hand. RESULTS: Significant differences were found in all outcome measures when VTF was added, with improved performance time (4.2 vs 5.3s) and a reduced number of grasping errors (3.0 vs 6.5 empty grips, 1.5 vs 4 empty transitions, 2.0 vs 4.5 block drops). CONCLUSIONS: Adding VTF to myoelectric prosthesis users has positive effects on performance time and accuracy when visual feedback is disturbed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9993 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29935153 Approved no  
  Call Number Serial 96  
Permanent link to this record
 

 
Author Friedman, J.; Raveh, E.; Weiss, T.; Itkin, S.; Niv, D.; Hani, M.; Portnoy, S. url  doi
openurl 
  Title Applying Incongruent Visual-Tactile Stimuli during Object Transfer with Vibro-Tactile Feedback Type
  Year 2019 Publication Journal of Visualized Experiments : JoVE Abbreviated Journal J Vis Exp  
  Volume (up) 147 Issue Pages e59493  
  Keywords  
  Abstract The application of incongruent sensory signals that involves disrupted tactile feedback is rarely explored, specifically with the presence of vibrotactile feedback (VTF). This protocol aims to test the effect of VTF on the response to incongruent visual-tactile stimuli. The tactile feedback is acquired by grasping a block and moving it across a partition. The visual feedback is a real-time virtual presentation of the moving block, acquired using a motion capture system. The congruent feedback is the reliable presentation of the movement of the block, so that the subject feels that the block is grasped and see it move along with the path of the hand. The incongruent feedback appears as the movement of the block diverts from the actual movement path, so that it seems to drop from the hand when it is actually still held by the subject, thereby contradicting the tactile feedback. Twenty subjects (age 30.2 +/- 16.3) repeated 16 block transfers, while their hand was hidden. These were repeated with VTF and without VTF (total of 32 block transfers). Incongruent stimuli were presented randomly twice within the 16 repetitions in each condition (with and without VTF). Each subject was asked to rate the difficulty level of performing the task with and without the VTF. There were no statistically significant differences in the length of the hand paths and durations between transfers recorded with congruent and incongruent visual-tactile signals – with and without the VTF. The perceived difficulty level of performing the task with the VTF significantly correlated with the normalized path length of the block with VTF (r = 0.675, p = 0.002). This setup is used to quantify the additive or reductive value of VTF during motor function that involves incongruent visual-tactile stimuli. Possible applications are prosthetics design, smart sport-wear, or any other garments that incorporate VTF.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1940-087X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31180348 Approved no  
  Call Number Serial 101  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: