toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Liebermann, D.G.; Goodman, D. url  doi
openurl 
  Title Pre-landing muscle timing and post-landing effects of falling with continuous vision and in blindfold conditions Type Journal Article
  Year 2007 Publication Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology Abbreviated Journal J Electromyogr Kinesiol  
  Volume 17 Issue 2 Pages 212-227  
  Keywords Adult; Analysis of Variance; Biomechanics; *Blindness; *Electromyography; Humans; Joints/physiology; Lower Extremity/physiology; Male; Movement/*physiology; Muscle, Skeletal/*physiology; Orientation; *Vision, Ocular  
  Abstract The present study examined the effect of continuous vision and its occlusion in timing of pre-landing actions during free falls. When vision is occluded, muscle activation is hypothesized to start relative to onset of the fall. However, when continuous vision is available onset of action is hypothesized to be relative to the moment of touchdown. Six subjects performed 6 randomized sets of 6 trials after becoming familiar with the task. The 36 trials were divided in 2 visual conditions (vision and blindfold) and 3 heights of fall (15, 45 and 75 cm). EMG activity was recorded from the gastrocnemius and rectus femoris muscles during the falls. The latency of onset (L(o)) and the lapse from EMG onset to touchdown (T(c)) were obtained from these muscles. Vertical forces were recorded to assess the effects of pre-landing activity on the impacts at collision with and without continuous vision. Peak amplitude (F(max)), time to peak (T(max)) and peak impulse normalized to momentum (I(norm)) were used as outcome measures. Within flight time ranges of approximately 50-400 ms, the results showed that L(o) and T(c) follow a similar linear trend whether continuous vision was available or occluded. However, the variability of T(c) for each of the muscles was larger in the vision occluded condition. Analyses of variance showed that the rectus femoris muscle started consistently earlier in no vision trials. Finally, impact forces were not different in vision or blindfold conditions, and thus, they were not affected by minor differences in the timing of muscles prior to landing. Thus, it appears that knowing the surroundings before falling may help to reduce the need for a continuous visual input. The relevance of such input cannot be ruled out for falls from high landing heights, but cognitive factors (e.g., attention to specific cues and anticipation of a fall) may play a dominant role in timing actions during short duration falls encountered daily.  
  Address Physical Therapy Department, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel. dlieberm@post.tau.ac.il <dlieberm@post.tau.ac.il>  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 1050-6411 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16600637 Approved no  
  Call Number Serial 37  
Permanent link to this record
 

 
Author Goodman, D.; Liebermann, D.G. openurl 
  Title Time-to-contact as a determiner of action: vision and motor control Type Book Chapter
  Year 1992 Publication Vision and Motor Control Abbreviated Journal  
  Volume Issue Pages 335-349  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Pub. Co Place of Publication Amsterdam, Holland Editor D. Elliott; J. Proteau  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 43  
Permanent link to this record
 

 
Author Liebermann, D.G.; Goodman, D. url  doi
openurl 
  Title Effects of visual guidance on the reduction of impacts during landings Type Journal Article
  Year 1991 Publication Ergonomics Abbreviated Journal Ergonomics  
  Volume 34 Issue 11 Pages 1399-1406  
  Keywords Adult; Analysis of Variance; Biomechanics; *Cues; Humans; Male; Motor Activity/*physiology; Psychomotor Performance/physiology; Vision, Ocular/*physiology  
  Abstract While a common view is that vision is essential to motor performance, some recent studies have shown that continuous visual guidance may not always be required within certain time constraints. This study investigated a landing-related task (self-released falls) to assess the extent to which visual information enhances the ability to reduce the impacts at touchdown. Six individuals performed six blocked trials from four height categories in semi-counterbalanced order (5-10, 20-25, 60-65, and 90-95 cm) in vision and no-vision conditions randomly assigned. A series of two-way ANOVA with repeated measures were carried out separately on each dependent variable collapsed over six trials. The results indicated that vision during the flight did not produce softer landings. Indeed, in analysing the first peak (PFP) a main effect for visual condition was revealed in that the mean amplitude was slightly higher when vision was available (F(1,5) = 6.57; p less than 0.05), thus implicating higher forces at impact. The results obtained when the time to the first peak (TFP) was applied showed no significant differences between conditions (F(1,5) less than 1). As expected, in all cases, the analyses yielded significant main effects for the height categories factor. It appears that during self-initiated falls in which the environmental cues are known before the event, visual guidance is not necessary in order to adopt a softer landing strategy.  
  Address Research Department, Wingate Institute, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title (up)  
  Series Volume Series Issue Edition  
  ISSN 0014-0139 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1800107 Approved no  
  Call Number Serial 55  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: