toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Grinberg, A.; Strong, A.; Strandberg, J.; Selling, J.; Liebermann, D.G.; Bjorklund, M.; Hager, C.K. url  doi
openurl 
  Title Electrocortical activity associated with movement-related fear: a methodological exploration of a threat-conditioning paradigm involving destabilising perturbations during quiet standing Type Journal Article
  Year 2024 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res  
  Volume Issue Pages  
  Keywords Cnv; Eeg; Erp; Kinesiophobia; Moving platform; Re-injury anxiety  
  Abstract Musculoskeletal trauma often leads to lasting psychological impacts stemming from concerns of future injuries. Often referred to as kinesiophobia or re-injury anxiety, such concerns have been shown to hinder return to physical activity and are believed to increase the risk for secondary injuries. Screening for re-injury anxiety is currently restricted to subjective questionnaires, which are prone to self-report bias. We introduce a novel approach to objectively identify electrocortical activity associated with the threat of destabilising perturbations. We aimed to explore its feasibility among non-injured persons, with potential future implementation for screening of re-injury anxiety. Twenty-three participants stood blindfolded on a translational balance perturbation platform. Consecutive auditory stimuli were provided as low (neutral stimulus [CS(-)]) or high (conditioned stimulus [CS(+)]) tones. For the main experimental protocol (Protocol I), half of the high tones were followed by a perturbation in one of eight unpredictable directions. A separate validation protocol (Protocol II) requiring voluntary squatting without perturbations was performed with 12 participants. Event-related potentials (ERP) were computed from electroencephalography recordings and significant time-domain components were detected using an interval-wise testing procedure. High-amplitude early contingent negative variation (CNV) waves were significantly greater for CS(+) compared with CS(-) trials in all channels for Protocol I (> 521-800ms), most prominently over frontal and central midline locations (P </= 0.001). For Protocol II, shorter frontal ERP components were observed (541-609ms). Our test paradigm revealed electrocortical activation possibly associated with movement-related fear. Exploring the discriminative validity of the paradigm among individuals with and without self-reported re-injury anxiety is warranted.  
  Address Department of Community Medicine and Rehabilitation, Umea University, Umea, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-4819 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:38896295 Approved no  
  Call Number Serial 122  
Permanent link to this record
 

 
Author Lowenthal-Raz, J.; Liebermann, D.G.; Friedman, J.; Soroker, N. url  doi
openurl 
  Title Kinematic descriptors of arm reaching movement are sensitive to hemisphere-specific immediate neuromodulatory effects of transcranial direct current stimulation post stroke Type Journal Article
  Year 2024 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 14 Issue 1 Pages 11971  
  Keywords Humans; *Transcranial Direct Current Stimulation/methods; Male; Female; Middle Aged; *Stroke/physiopathology/therapy; Biomechanical Phenomena; Aged; *Arm/physiopathology; *Movement/physiology; *Stroke Rehabilitation/methods; Single-Blind Method; Cross-Over Studies  
  Abstract Transcranial direct current stimulation (tDCS) exerts beneficial effects on motor recovery after stroke, presumably by enhancement of adaptive neural plasticity. However, patients with extensive damage may experience null or deleterious effects with the predominant application mode of anodal (excitatory) stimulation of the damaged hemisphere. In such cases, excitatory stimulation of the non-damaged hemisphere might be considered. Here we asked whether tDCS exerts a measurable effect on movement quality of the hemiparetic upper limb, following just a single treatment session. Such effect may inform on the hemisphere that should be excited. Using a single-blinded crossover experimental design, stroke patients and healthy control subjects were assessed before and after anodal, cathodal and sham tDCS, each provided during a single session of reaching training (repeated point-to-point hand movement on an electronic tablet). Group comparisons of endpoint kinematics at baseline-number of peaks in the speed profile (NoP; smoothness), hand-path deviations from the straight line (SLD; accuracy) and movement time (MT; speed)-disclosed greater NoP, larger SLD and longer MT in the stroke group. NoP and MT revealed an advantage for anodal compared to sham stimulation of the lesioned hemisphere. NoP and MT improvements under anodal stimulation of the non-lesioned hemisphere correlated positively with the severity of hemiparesis. Damage to specific cortical regions and white-matter tracts was associated with lower kinematic gains from tDCS. The study shows that simple descriptors of movement kinematics of the hemiparetic upper limb are sensitive enough to demonstrate gain from neuromodulation by tDCS, following just a single session of reaching training. Moreover, the results show that tDCS-related gain is affected by the severity of baseline motor impairment, and by lesion topography.  
  Address Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel. nachum@soroker.online  
  Corporate Author Thesis  
  Publisher Place of Publication Editor (up)  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:38796610; PMCID:PMC11127956 Approved no  
  Call Number Serial 125  
Permanent link to this record
 

 
Author Goodman, D.; Liebermann, D.G. openurl 
  Title Time-to-contact as a determiner of action: vision and motor control Type Book Chapter
  Year 1992 Publication Vision and Motor Control Abbreviated Journal  
  Volume Issue Pages 335-349  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Pub. Co Place of Publication Amsterdam, Holland Editor (up) D. Elliott; J. Proteau  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 43  
Permanent link to this record
 

 
Author Liebermann, D.G.; Franks I.M. openurl 
  Title Video-feedback and information technologies Type Book Chapter
  Year 2008 Publication Essentials of notational analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher E & FN Spon Pub Place of Publication Editor (up) I.M. Franks; M. Hughes  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 48  
Permanent link to this record
 

 
Author Liebermann, D.G.; Franks, I. M. openurl 
  Title The use of feedback-based technologies in skill acquisition Type Book Chapter
  Year 2004 Publication Notational analysis of Sport and Coaching Science Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher E & FN Spon Pub Place of Publication Editor (up) M. Hughes; I.M. Franks  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 45  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: