toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author Markstrom, J.L.; Liebermann, D.G.; Schelin, L.; Hager, C.K. url  doi
openurl 
  Title Atypical Lower Limb Mechanics During Weight Acceptance of Stair Descent at Different Time Frames After Anterior Cruciate Ligament Reconstruction Type Journal Article
  Year 2022 Publication The American Journal of Sports Medicine Abbreviated Journal Am J Sports Med  
  Volume Issue Pages 1-9  
  Keywords Acl; biomechanics; functional data analysis; motion analysis; stepping down  
  Abstract BACKGROUND: An anterior cruciate ligament (ACL) rupture may result in poor sensorimotor knee control and, consequentially, adapted movement strategies to help maintain knee stability. Whether patients display atypical lower limb mechanics during weight acceptance of stair descent at different time frames after ACL reconstruction (ACLR) is unknown. PURPOSE: To compare the presence of atypical lower limb mechanics during the weight acceptance phase of stair descent among athletes at early, middle, and late time frames after unilateral ACLR. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 49 athletes with ACLR were classified into 3 groups according to time after ACLR-early (<6 months; n = 17), middle (6-18 months; n = 16), and late (>18 months; n = 16)-and compared with asymptomatic athletes (control; n = 18). Sagittal plane hip, knee, and ankle angles; angular velocities; moments; and powers were compared between the ACLR groups' injured and noninjured legs and the control group as well as between legs within groups using functional data analysis methods. RESULTS: All 3 ACLR groups showed greater knee flexion angles and moments than the control group for injured and noninjured legs. For the other outcomes, the early group had, compared with the control group, less hip power absorption, more knee power absorption, lower ankle plantarflexion angle, lower ankle dorsiflexion moment, and less ankle power absorption for the injured leg and more knee power absorption and higher vertical ground reaction force for the noninjured leg. In addition, the late group showed differences from the control group for the injured leg revealing more knee power absorption and lower ankle plantarflexion angle. Only the early group took a longer time than the control group to complete weight acceptance and demonstrated asymmetry for multiple outcomes. CONCLUSION: Athletes with different time frames after ACLR revealed atypically large knee angles and moments during weight acceptance of stair descent for both the injured and the noninjured legs. These findings may express a chronically adapted strategy to increase knee control. In contrast, atypical hip and ankle mechanics seem restricted to an early time frame after ACLR. CLINICAL RELEVANCE: Rehabilitation after ACLR should include early training in controlling weight acceptance. Including a control group is essential when evaluating movement patterns after ACLR because both legs may be affected.  
  Address Department of Community Medicine and Rehabilitation, Physiotherapy, Umea University, Umea, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor (down) Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0363-5465 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:35604127 Approved no  
  Call Number Serial 112  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: