|
Records |
Links |
|
Author |
Liebermann, D.G.; Goodman, D. |
|
|
Title |
Effects of visual guidance on the reduction of impacts during landings |
Type |
Journal Article |
|
Year |
1991 |
Publication |
Ergonomics |
Abbreviated Journal |
Ergonomics |
|
|
Volume |
34 |
Issue |
11 |
Pages |
1399-1406 |
|
|
Keywords |
Adult; Analysis of Variance; Biomechanics; *Cues; Humans; Male; Motor Activity/*physiology; Psychomotor Performance/physiology; Vision, Ocular/*physiology |
|
|
Abstract |
While a common view is that vision is essential to motor performance, some recent studies have shown that continuous visual guidance may not always be required within certain time constraints. This study investigated a landing-related task (self-released falls) to assess the extent to which visual information enhances the ability to reduce the impacts at touchdown. Six individuals performed six blocked trials from four height categories in semi-counterbalanced order (5-10, 20-25, 60-65, and 90-95 cm) in vision and no-vision conditions randomly assigned. A series of two-way ANOVA with repeated measures were carried out separately on each dependent variable collapsed over six trials. The results indicated that vision during the flight did not produce softer landings. Indeed, in analysing the first peak (PFP) a main effect for visual condition was revealed in that the mean amplitude was slightly higher when vision was available (F(1,5) = 6.57; p less than 0.05), thus implicating higher forces at impact. The results obtained when the time to the first peak (TFP) was applied showed no significant differences between conditions (F(1,5) less than 1). As expected, in all cases, the analyses yielded significant main effects for the height categories factor. It appears that during self-initiated falls in which the environmental cues are known before the event, visual guidance is not necessary in order to adopt a softer landing strategy. |
|
|
Address |
Research Department, Wingate Institute, Israel |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0014-0139 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:1800107 |
Approved |
no |
|
|
Call Number |
|
Serial |
55 |
|
Permanent link to this record |
|
|
|
|
Author |
Liebermann, D.G.; Biess, A.; Friedman, J.; Gielen, C.C.A.M.; Flash, T. |
|
|
Title |
Intrinsic joint kinematic planning. I: reassessing the Listing's law constraint in the control of three-dimensional arm movements |
Type |
Journal Article |
|
Year |
2006 |
Publication |
Experimental Brain Research |
Abbreviated Journal |
Exp Brain Res |
|
|
Volume |
171 |
Issue |
2 |
Pages |
139-154 |
|
|
Keywords |
Adolescent; Adult; Analysis of Variance; *Arm; Biomechanics; Eye Movements/*physiology; Humans; Joints/*physiology; Male; Movement/*physiology; *Musculoskeletal System; Orientation/*physiology; Posture |
|
|
Abstract |
This study tested the validity of the assumption that intrinsic kinematic constraints, such as Listing's law, can account for the geometric features of three-dimensional arm movements. In principle, if the arm joints follow a Listing's constraint, the hand paths may be predicted. Four individuals performed 'extended arm', 'radial', 'frontal plane', and 'random mixed' movements to visual targets to test Listing's law assumption. Three-dimensional rotation vectors of the upper arm and forearm were calculated from three-dimensional marker data. Data fitting techniques were used to test Donders' and Listing's laws. The coefficient values obtained from fitting rotation vectors to the surfaces described by a second-order equation were analyzed. The results showed that the coefficients that represent curvature and twist of the surfaces were often not significantly different from zero, particularly not during randomly mixed and extended arm movements. These coefficients for forearm rotations were larger compared to those for the upper arm segment rotations. The mean thickness of the rotation surfaces ranged between approximately 1.7 degrees and 4.7 degrees for the rotation vectors of the upper arm segment and approximately 2.6 degrees and 7.5 degrees for those of the forearm. During frontal plane movements, forearm rotations showed large twist scores while upper arm segment rotations showed large curvatures, although the thickness of the surfaces remained low. The curvatures, but not the thicknesses of the surfaces, were larger for large versus small amplitude radial movements. In conclusion, when examining the surfaces obtained for the different movement types, the rotation vectors may lie within manifolds that are anywhere between curved or twisted manifolds. However, a two-dimensional thick surface may roughly represent a global arm constraint. Our findings suggest that Listing's law is implemented for some types of arm movement, such as pointing to targets with the extended arm and during radial reaching movements. |
|
|
Address |
Department of Physical Therapy, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Ramat Aviv, Israel. dlieberm@post.tau.ac.il |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0014-4819 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:16341526 |
Approved |
no |
|
|
Call Number |
Penn State @ write.to.jason @ |
Serial |
18 |
|
Permanent link to this record |
|
|
|
|
Author |
Hoffman, J.R.; Liebermann, D.; Gusis, A. |
|
|
Title |
Relationship of leg strength and power to ground reaction forces in both experienced and novice jump trained personnel |
Type |
Journal Article |
|
Year |
1997 |
Publication |
Aviation, Space, and Environmental Medicine |
Abbreviated Journal |
Aviat Space Environ Med |
|
|
Volume |
68 |
Issue |
8 |
Pages |
710-714 |
|
|
Keywords |
*Aerospace Medicine; *Aviation; Biomechanics; Humans; Leg/*physiology; Male; Military Personnel/*education; *Physical Education and Training; Physical Fitness/*physiology; Range of Motion, Articular; Wounds and Injuries/etiology/*prevention & control |
|
|
Abstract |
METHODS: There were 14 male soldiers who participated in this study examining the relationship of leg strength and power on landing performance. Subjects were separated into two groups. The first group (E, n = 7) were parachute training instructors and highly experienced in parachute jumping. The second group of subjects (N, n = 7) had no prior parachute training experience and were considered novice jumpers. All subjects were tested for one-repetition maximum (1 RM) squat strength and maximal jump power. Ground reaction forces (GRF) and the time to peak force (TPF) at landing were measured from jumps at four different heights (95 cm, 120 cm, 145 cm, and 170 cm). All jumps were performed from a customized jump platform onto a force plate. RESULTS: No differences were seen between E and N in either IRM squat strength or in MJP. In addition, no differences were seen between the groups for time to peak force at any jump height. However, significantly greater GRF were observed in E compared to N. Moderate to high correlations between maximal jump power and GRF (r values ranging from 0.62-0.93) were observed in E. Although maximal jump power and the TPF was significantly correlated (r = -0.89) at only 120 cm for E, it was interesting to note that the correlations between MJP and the time to peak force in E were all negative and that the correlations between these variables in N were all positive. CONCLUSIONS: These results suggest that experienced parachutists may use a different landing strategy than novice jumpers. This difference may be reflected by differences in GRF generated during impact and a more efficient utilization of muscle power during the impact phase of the landing. |
|
|
Address |
Aeromedical Center, Physiological Training Unit, Israel Air Force, Israel |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0095-6562 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:9262813 |
Approved |
no |
|
|
Call Number |
|
Serial |
60 |
|
Permanent link to this record |
|
|
|
|
Author |
Melzer, I.; Krasovsky, T.; Oddsson, L.I.E.; Liebermann, D.G. |
|
|
Title |
Age-related differences in lower-limb force-time relation during the push-off in rapid voluntary stepping |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Clinical Biomechanics (Bristol, Avon) |
Abbreviated Journal |
Clin Biomech (Bristol, Avon) |
|
|
Volume |
25 |
Issue |
10 |
Pages |
989-994 |
|
|
Keywords |
Accidental Falls/prevention & control; Age Factors; Aged; Aged, 80 and over; Aging/physiology; *Biomechanics; Female; Gait/*physiology; Humans; Male; *Postural Balance; Walking/*physiology |
|
|
Abstract |
BACKGROUND: This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. METHODS: Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P </= 0.05). FINDINGS: Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. INTERPRETATIONS: Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls. |
|
|
Address |
Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0268-0033 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:20724044 |
Approved |
no |
|
|
Call Number |
|
Serial |
51 |
|
Permanent link to this record |
|
|
|
|
Author |
Biess, A.; Liebermann, D.G.; Flash, T. |
|
|
Title |
A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics |
Type |
Journal Article |
|
Year |
2007 |
Publication |
The Journal of Neuroscience : the Official Journal of the Society for Neuroscience |
Abbreviated Journal |
J Neurosci |
|
|
Volume |
27 |
Issue |
48 |
Pages |
13045-13064 |
|
|
Keywords |
Analysis of Variance; Arm/physiology; Biomechanics; *Computer Simulation; Humans; *Models, Biological; Movement/*physiology; *Nonlinear Dynamics; Posture/physiology; Psychomotor Performance/*physiology; Range of Motion, Articular/physiology; Reaction Time/physiology; Space Perception/*physiology; Time Factors; Torque |
|
|
Abstract |
Few computational models have addressed the spatiotemporal features of unconstrained three-dimensional (3D) arm motion. Empirical observations made on hand paths, speed profiles, and arm postures during point-to-point movements led to the assumption that hand path and arm posture are independent of movement speed, suggesting that the geometric and temporal properties of movements are decoupled. In this study, we present a computational model of 3D movements for an arm with four degrees of freedom based on the assumption that optimization principles are separately applied at the geometric and temporal levels of control. Geometric properties (path and posture) are defined in terms of geodesic paths with respect to the kinetic energy metric in the Riemannian configuration space. Accordingly, a geodesic path can be generated with less muscular effort than on any other, nongeodesic path, because the sum of all configuration-speed-dependent torques vanishes. The temporal properties of the movement (speed) are determined in task space by minimizing the squared jerk along the selected end-effector path. The integration of both planning levels into a single spatiotemporal representation simplifies the control of arm dynamics along geodesic paths and results in movements with near minimal torque change and minimal peak value of kinetic energy. Thus, the application of Riemannian geometry allows for a reconciliation of computational models previously proposed for the description of arm movements. We suggest that geodesics are an emergent property of the motor system through the exploration of dynamical space. Our data validated the predictions for joint trajectories, hand paths, final postures, speed profiles, and driving torques. |
|
|
Address |
Department of Mathematics, Weizmann Institute of Science, 76100 Rehovot, Israel. armin.biess@weizmann.ac.il |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0270-6474 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:18045899 |
Approved |
no |
|
|
Call Number |
|
Serial |
35 |
|
Permanent link to this record |