toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Liebermann, D.G.; Buchman, A.S.; Franks, I.M. url  doi
openurl 
  Title Enhancement of motor rehabilitation through the use of information technologies Type Journal Article
  Year 2006 Publication Clinical Biomechanics (Bristol, Avon) Abbreviated Journal Clin Biomech (Bristol, Avon)  
  Volume 21 Issue 1 Pages 8-20  
  Keywords Biotechnology/*methods; Humans; Medical Informatics/*methods; Motion Therapy, Continuous Passive/*methods; Movement Disorders/*rehabilitation; Musculoskeletal Manipulations/methods; Rehabilitation/*methods; Robotics/*methods; Therapy, Computer-Assisted/*methods  
  Abstract The recent development of information technologies has dramatically increased the tools available for facilitating motor rehabilitation. This review focuses on technologies which can be used to augment movement-related information both to patients as well as to their therapists. A brief outline of the motor system emphasizes the role of spinal motor neurons in the control of voluntary movement and rehabilitative efforts. Technologies which induce passive motion to stimulate spinal motor output as well as technologies that stimulate active voluntary movements are discussed. Finally, we review technologies and notational methods that can be used to quantify and assess the quality of movement for evaluating the efficacy of motor rehabilitation efforts. We conclude that stronger evidence is necessary to determine the applicability of the wide range of technologies now available to clinical rehabilitation efforts.  
  Address Department of Physical Therapy, Sackler Faculty of Medicine, University of Tel Aviv, Israel. dlieberm@post.tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 0268-0033 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16198463 Approved no  
  Call Number Serial 49  
Permanent link to this record
 

 
Author Melzer, I.; Krasovsky, T.; Oddsson, L.I.E.; Liebermann, D.G. url  doi
openurl 
  Title Age-related differences in lower-limb force-time relation during the push-off in rapid voluntary stepping Type Journal Article
  Year 2010 Publication Clinical Biomechanics (Bristol, Avon) Abbreviated Journal Clin Biomech (Bristol, Avon)  
  Volume 25 Issue 10 Pages 989-994  
  Keywords Accidental Falls/prevention & control; Age Factors; Aged; Aged, 80 and over; Aging/physiology; *Biomechanics; Female; Gait/*physiology; Humans; Male; *Postural Balance; Walking/*physiology  
  Abstract BACKGROUND: This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. METHODS: Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P </= 0.05). FINDINGS: Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. INTERPRETATIONS: Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls.  
  Address Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume (down) Series Issue Edition  
  ISSN 0268-0033 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20724044 Approved no  
  Call Number Serial 51  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: