|
Krasovsky, T., Weiss, P. L., Zuckerman, O., Bar, A., Keren-Capelovitch, T., & Friedman, J. (2020). DataSpoon: Validation of an Instrumented Spoon for Assessment of Self-Feeding. Sensors (Basel), 20(7).
Abstract: Clinically feasible assessment of self-feeding is important for adults and children with motor impairments such as stroke or cerebral palsy. However, no validated assessment tool for self-feeding kinematics exists. This work presents an initial validation of an instrumented spoon (DataSpoon) developed as an evaluation tool for self-feeding kinematics. Ten young, healthy adults (three male; age 27.2 +/- 6.6 years) used DataSpoon at three movement speeds (slow, comfortable, fast) and with three different grips: “natural”, power and rotated power grip. Movement kinematics were recorded concurrently using DataSpoon and a magnetic motion capture system (trakSTAR). Eating events were automatically identified for both systems and kinematic measures were extracted from yaw, pitch and roll (YPR) data as well as from acceleration and tangential velocity profiles. Two-way, mixed model Intraclass correlation coefficients (ICC) and 95% limits of agreement (LOA) were computed to determine agreement between the systems for each kinematic variable. Most variables demonstrated fair to excellent agreement. Agreement for measures of duration, pitch and roll exceeded 0.8 (excellent agreement) for >80% of speed and grip conditions, whereas lower agreement (ICC < 0.46) was measured for tangential velocity and acceleration. A bias of 0.01-0.07 s (95% LOA [-0.54, 0.53] to [-0.63, 0.48]) was calculated for measures of duration. DataSpoon enables automatic detection of self-feeding using simple, affordable movement sensors. Using movement kinematics, variables associated with self-feeding can be identified and aid clinical reasoning for adults and children with motor impairments.
|
|
|
Shaklai, S., Mimouni-Bloch, A., Levin, M., & Friedman, J. (2017). Development of finger force coordination in children. Experimental Brain Research, 235(12), 3709–3720.
Abstract: Coordination is often observed as body parts moving together. However, when producing force with multiple fingers, the optimal coordination is not to produce similar forces with each finger, but rather for each finger to correct mistakes of other fingers. In this study, we aim to determine whether and how this skill develops in children aged 4-12 years. We measured this sort of coordination using the uncontrolled manifold hypothesis (UCM). We recorded finger forces produced by 60 typically developing children aged between 4 and 12 years in a finger-pressing task. The children controlled the height of an object on a screen by the total amount of force they produced on force sensors. We found that the synergy index, a measure of the relationship between “good” and “bad” variance, increased linearly as a function of age. This improvement was achieved by a selective reduction in “bad” variance rather than an increase in “good” variance. We did not observe differences between males and females, and the synergy index was not able to predict outcomes of upper limb behavioral tests after controlling for age. As children develop between the ages of 4 and 12 years, their ability to produce negative covariation between their finger forces improves, likely related to their improved ability to perform dexterous tasks.
|
|
|
Mimouni-Bloch, A., Shaklai, S., Levin, M., Ingber, M., Karolitsky, T., Grunbaum, S., et al. (2023). Developmental and acquired brain injury have opposite effects on finger coordination in children. Front. Hum. Neurosci., 17, 1083304.
|
|
|
Portnoy, S., Rosenberg, L., Alazraki, T., Elyakim, E., & Friedman, J. (2015). Differences in Muscle Activity Patterns and Graphical Product Quality in Children Copying and Tracing Activities on Horizontal or Vertical Surfaces. Journal of Electromyography and Kinesiology, 25(3), 540�547.
Abstract: The observation that a given task, e.g. producing a signature, looks similar when created by different motor commands and different muscles groups is known as motor equivalence. Relatively little data exists regarding the characteristics of motor equivalence in children. In this study, we compared the level of performance when performing a tracing task and copying figures in two common postures: while sitting at a desk and while standing in front of a wall, among preschool children. In addition, we compared muscle activity patterns in both postures. Specifically, we compared the movements of 35 five- to six-year old children, recording the same movements of copying figures and path tracing on an electronic tablet in both a horizontal orientation, while sitting, and a vertical orientation, while standing. Different muscle activation patterns were observed between the postures, however no significant difference in the performance level was found, providing evidence of motor equivalence at this young age. The study presents a straightforward method of assessing motor equivalence that can be extended to other stages of development as well as motor disorders.
|
|
|
Awasthi, B., Sowman, P. F., Friedman, J., & Williams, M. A. (2013). Distinct spatial scale sensitivities for early categorisation of Faces and Places: Neuromagnetic and Behavioural Findings. Frontiers in Human Neuroscience, 7(91).
Abstract: Research exploring the role of spatial frequencies in rapid stimulus detection and categorisation report flexible reliance on specific spatial frequency bands. Here, through a set of behavioural and magnetoencephalography (MEG) experiments, we investigated the role of low spatial frequency (LSF)(25 cpf) information during the categorisation of faces and places. Reaction time measures revealed significantly faster categorisation of faces driven by LSF information, while rapid categorisation of places was facilitated by HSF information. The MEG study showed significantly earlier latency of the M170 component for LSF faces compared to HSF faces. Moreover, the M170 amplitude was larger for LSF faces than for LSF places, whereas the reverse pattern was evident for HSF faces and places. These results suggest that spatial frequency modulates the processing of category specific information for faces and places.
|
|