|
Wilf, M., Korakin, A., Bahat, Y., Koren, O., Galor, N., Dagan, O., et al. (2024). Using virtual reality-based neurocognitive testing and eye tracking to study naturalistic cognitive-motor performance. Neuropsychologia, 194, 108744.
Abstract: Natural human behavior arises from continuous interactions between the cognitive and motor domains. However, assessments of cognitive abilities are typically conducted using pen and paper tests, i.e., in isolation from “real life” cognitive-motor behavior and in artificial contexts. In the current study, we aimed to assess cognitive-motor task performance in a more naturalistic setting while recording multiple motor and eye tracking signals. Specifically, we aimed to (i) delineate the contribution of cognitive and motor components to overall task performance and (ii) probe for a link between cognitive-motor performance and pupil size. To that end, we used a virtual reality (VR) adaptation of a well-established neurocognitive test for executive functions, the 'Color Trails Test' (CTT). The VR-CTT involves performing 3D reaching movements to follow a trail of numbered targets. To tease apart the cognitive and motor components of task performance, we included two additional conditions: a condition where participants only used their eyes to perform the CTT task (using an eye tracking device), incurring reduced motor demands, and a condition where participants manually tracked visually-cued targets without numbers on them, incurring reduced cognitive demands. Our results from a group of 30 older adults (>65) showed that reducing cognitive demands shortened completion times more extensively than reducing motor demands. Conditions with higher cognitive demands had longer target search time, as well as decreased movement execution velocity and head-hand coordination. We found larger pupil sizes in the more cognitively demanding conditions, and an inverse correlation between pupil size and completion times across individuals in all task conditions. Lastly, we found a possible link between VR-CTT performance measures and clinical signatures of participants (fallers versus non-fallers). In summary, performance and pupil parameters were mainly dependent on task cognitive load, while maintaining systematic interindividual differences. We suggest that this paradigm opens the possibility for more detailed profiling of individual cognitive-motor performance capabilities in older adults and other at-risk populations.
|
|
|
Liebermann, D. G., Biess, A., Friedman, J., Gielen, C. C. A. M., & Flash, T. (2006). Intrinsic joint kinematic planning. I: reassessing the Listing's law constraint in the control of three-dimensional arm movements. Exp Brain Res, 171(2), 139–154.
Abstract: This study tested the validity of the assumption that intrinsic kinematic constraints, such as Listing's law, can account for the geometric features of three-dimensional arm movements. In principle, if the arm joints follow a Listing's constraint, the hand paths may be predicted. Four individuals performed 'extended arm', 'radial', 'frontal plane', and 'random mixed' movements to visual targets to test Listing's law assumption. Three-dimensional rotation vectors of the upper arm and forearm were calculated from three-dimensional marker data. Data fitting techniques were used to test Donders' and Listing's laws. The coefficient values obtained from fitting rotation vectors to the surfaces described by a second-order equation were analyzed. The results showed that the coefficients that represent curvature and twist of the surfaces were often not significantly different from zero, particularly not during randomly mixed and extended arm movements. These coefficients for forearm rotations were larger compared to those for the upper arm segment rotations. The mean thickness of the rotation surfaces ranged between approximately 1.7 degrees and 4.7 degrees for the rotation vectors of the upper arm segment and approximately 2.6 degrees and 7.5 degrees for those of the forearm. During frontal plane movements, forearm rotations showed large twist scores while upper arm segment rotations showed large curvatures, although the thickness of the surfaces remained low. The curvatures, but not the thicknesses of the surfaces, were larger for large versus small amplitude radial movements. In conclusion, when examining the surfaces obtained for the different movement types, the rotation vectors may lie within manifolds that are anywhere between curved or twisted manifolds. However, a two-dimensional thick surface may roughly represent a global arm constraint. Our findings suggest that Listing's law is implemented for some types of arm movement, such as pointing to targets with the extended arm and during radial reaching movements.
|
|
|
Friedman, J., Raveh, E., Weiss, T., Itkin, S., Niv, D., Hani, M., et al. (2019). Applying Incongruent Visual-Tactile Stimuli during Object Transfer with Vibro-Tactile Feedback (Vol. 147).
Abstract: The application of incongruent sensory signals that involves disrupted tactile feedback is rarely explored, specifically with the presence of vibrotactile feedback (VTF). This protocol aims to test the effect of VTF on the response to incongruent visual-tactile stimuli. The tactile feedback is acquired by grasping a block and moving it across a partition. The visual feedback is a real-time virtual presentation of the moving block, acquired using a motion capture system. The congruent feedback is the reliable presentation of the movement of the block, so that the subject feels that the block is grasped and see it move along with the path of the hand. The incongruent feedback appears as the movement of the block diverts from the actual movement path, so that it seems to drop from the hand when it is actually still held by the subject, thereby contradicting the tactile feedback. Twenty subjects (age 30.2 +/- 16.3) repeated 16 block transfers, while their hand was hidden. These were repeated with VTF and without VTF (total of 32 block transfers). Incongruent stimuli were presented randomly twice within the 16 repetitions in each condition (with and without VTF). Each subject was asked to rate the difficulty level of performing the task with and without the VTF. There were no statistically significant differences in the length of the hand paths and durations between transfers recorded with congruent and incongruent visual-tactile signals – with and without the VTF. The perceived difficulty level of performing the task with the VTF significantly correlated with the normalized path length of the block with VTF (r = 0.675, p = 0.002). This setup is used to quantify the additive or reductive value of VTF during motor function that involves incongruent visual-tactile stimuli. Possible applications are prosthetics design, smart sport-wear, or any other garments that incorporate VTF.
|
|
|
Raveh, E., Friedman, J., & Portnoy, S. (2018). Evaluation of the effects of adding vibrotactile feedback to myoelectric prosthesis users on performance and visual attention in a dual-task paradigm. Clin Rehabil, 99(11), 2263–2270.
Abstract: Objective: To evaluate the effects of adding vibrotactile feedback to myoelectric prosthesis users on the performance time and visual attention in a dual-task paradigm.
Design: A repeated-measures design with a counterbalanced order of two conditions.
Setting: Laboratory setting.
Subjects: Transradial amputees using a myoelectric prosthesis with normal or corrected eyesight (N=12, median age=65 ± 13 years). Exclusion criteria were orthopedic or neurologic problems.
Interventions: Subjects performed grasping tasks with their prosthesis, while controlling a virtual car on a road with their intact hand. The dual task was performed twice: with and without vibrotactile feedback.
Main measures: Performance time of each of the grasping tasks and gaze behavior, measured by the number of times the subjects shifted their gaze toward their hand, the relative time they applied their attention to the screen, and percentage of error in the secondary task.
Results: The mean performance time was significantly shorter (P=0.024) when using vibrotactile feedback (93.2 ± 9.6 seconds) compared with the performance time measured when vibrotactile feedback was not available (107.8 ± 20.3seconds). No significant differences were found between the two conditions in the number of times the gaze shifted from the screen to the hand, in the time the subjects applied their attention to the screen, and in the time the virtual car was off-road, as a percentage of the total game time
(51.4 ± 15.7 and 50.2 ± 19.5, respectively).
Conclusion: Adding vibrotactile feedback improved performance time during grasping in a dual-task paradigm. Prosthesis users may use vibrotactile feedback to perform better during daily tasks, when multiple cognitive demands are present.
|
|
|
Raveh, E., Portnoy, S., & Friedman, J. (2018). Myoelectric Prosthesis Users Improve Performance Time and Accuracy Using Vibrotactile Feedback When Visual Feedback Is Disturbed. Arch Phys Med Rehabil, 99(11), 2263–2270.
Abstract: OBJECTIVE: To evaluate the effects of adding vibrotactile feedback (VTF) in myoelectric prosthesis users during performance of a functional task when visual feedback is disturbed. DESIGN: A repeated-measures design with a counter-balanced order of 3 conditions. SETTING: Laboratory setting. PARTICIPANTS: Transradial amputees using a myoelectric prosthesis with normal or corrected eyesight (N=12, median age 65+/-13y). Exclusion criteria were orthopedic or neurologic problems. INTERVENTIONS: All participants performed the modified Box and Blocks Test, grasping and manipulating 16 blocks over a partition using their myoelectric prosthesis. This was performed 3 times: in full light, in a dark room without VTF, and in a dark room with VTF. MAIN OUTCOME MEASURES: Performance time, that is, the time needed to transfer 1 block, and accuracy during performance, measured by number of empty grips, empty transitions with no block and block drops from the hand. RESULTS: Significant differences were found in all outcome measures when VTF was added, with improved performance time (4.2 vs 5.3s) and a reduced number of grasping errors (3.0 vs 6.5 empty grips, 1.5 vs 4 empty transitions, 2.0 vs 4.5 block drops). CONCLUSIONS: Adding VTF to myoelectric prosthesis users has positive effects on performance time and accuracy when visual feedback is disturbed.
|
|