|
Roijezon, U., Djupsjobacka, M., Bjorklund, M., Hager-Ross, C., Grip, H., & Liebermann, D. G. (2010). Kinematics of fast cervical rotations in persons with chronic neck pain: a cross-sectional and reliability study. BMC Musculoskelet Disord, 11, 222.
Abstract: BACKGROUND: Assessment of sensorimotor function is useful for classification and treatment evaluation of neck pain disorders. Several studies have investigated various aspects of cervical motor functions. Most of these have involved slow or self-paced movements, while few have investigated fast cervical movements. Moreover, the reliability of assessment of fast cervical axial rotation has, to our knowledge, not been evaluated before. METHODS: Cervical kinematics was assessed during fast axial head rotations in 118 women with chronic nonspecific neck pain (NS) and compared to 49 healthy controls (CON). The relationship between cervical kinematics and symptoms, self-rated functioning and fear of movement was evaluated in the NS group. A sub-sample of 16 NS and 16 CON was re-tested after one week to assess the reliability of kinematic variables. Six cervical kinematic variables were calculated: peak speed, range of movement, conjunct movements and three variables related to the shape of the speed profile. RESULTS: Together, peak speed and conjunct movements had a sensitivity of 76% and a specificity of 78% in discriminating between NS and CON, of which the major part could be attributed to peak speed (NS: 226 +/- 88 degrees /s and CON: 348 +/- 92 degrees /s, p < 0.01). Peak speed was slower in NS compared to healthy controls and even slower in NS with comorbidity of low-back pain. Associations were found between reduced peak speed and self-rated difficulties with running, performing head movements, car driving, sleeping and pain. Peak speed showed reasonably high reliability, while the reliability for conjunct movements was poor. CONCLUSIONS: Peak speed of fast cervical axial rotations is reduced in people with chronic neck pain, and even further reduced in subjects with concomitant low back pain. Fast cervical rotation test seems to be a reliable and valid tool for assessment of neck pain disorders on group level, while a rather large between subject variation and overlap between groups calls for caution in the interpretation of individual assessments.
|
|
|
Tenenbaum, G., Kohler, N., Shraga, S., Liebermann, D. G., & Lidor, R. (1996). Anticipation and confidence of decisions related to skilled performance. Journal of Sport Psychology, 27, 293–307.
Abstract: This study was carried out to examine anticipatory decisions of novice, intermediate, and expert tennis players and the confidence with which these decisions are made by these athletes. Perceived eye-focus was also measured to verify whether it is related to expertise level prior to action execution. Forty-five Australian players, 15 in each skill category, were exposed to 6 temporal occluded film conditions (480, 320, 160 ms prior to racquet-ball contact, at contact, and 160 and 320 ms after contact) in randomized order within 8 tennis strokes. In each condition, after viewing the filmed sequence, they were asked to report the final ball location of the opponent's stroke, how confident they were in this decision, and their perceived eye-focus location during the sequence. Experts and intermediates were superior in anticipatory decisions to their counterparts, only under short exposure durations. Novices showed more confidence than experts and intermediates at the beginning of the sequence, but after 160 and 320 ms of ball-racquet contact, experts were much more confident than novices, and intermediates. Self-reported eye-focus differed substantially with respect to expertise level. While experts attended to several locations prior to ball-racquet contact, intermediate and novice players gazed at one location. After contact, the reverse was evident. The findings are in partial agreement with other studies which have applied the temporal occlusion paradigm to study expert-novice differences in anticipatory skills.
|
|
|
Goodman, D., & Liebermann, D. G. (1992). Time-to-contact as a determiner of action: vision and motor control. In D. Elliott, & J. Proteau (Eds.), Vision and Motor Control (pp. 335–349). Amsterdam, Holland: Elsevier Pub. Co.
|
|
|
Melzer, I., Liebermann, D. G., Krasovsky, T., & Oddsson, L. I. E. (2010). Cognitive load affects lower limb force-time relations during voluntary rapid stepping in healthy old and young adults. J Gerontol A Biol Sci Med Sci, 65(4), 400–406.
Abstract: BACKGROUND: Quick step execution may prevent falls when balance is lost; adding a concurrent task delays this function. We investigate whether push-off force-time relations during the execution of rapid voluntary stepping is affected by a secondary task in older and young adults. METHODS: Nineteen healthy older adults and 12 young adults performed rapid voluntary stepping under single- and dual-task conditions. Peak power, peak force, and time to peak force during preparatory and swing phases of stepping were extracted from center of pressure and ground reaction force data. RESULTS: For dual-task condition compared with single-task condition, older adults show a longer time to reach peak force during the preparation and swing phases compared with young adults (approximately 25% vs approximately 10%, respectively). Peak power and peak force were not affected by a concurrent attention-demanding task. CONCLUSION: Older adults have difficulty allocating sufficient attention for fast muscle recruitment when concurrently challenged by an attention-demanding task.
|
|
|
Liebermann, D. G., Krasovsky, T., & Berman, S. (2008). Planning maximally smooth hand movements constrained to nonplanar workspaces. J Mot Behav, 40(6), 516–531.
Abstract: The article characterizes hand paths and speed profiles for movements performed in a nonplanar, 2-dimensional workspace (a hemisphere of constant curvature). The authors assessed endpoint kinematics (i.e., paths and speeds) under the minimum-jerk model assumptions and calculated minimal amplitude paths (geodesics) and the corresponding speed profiles. The authors also calculated hand speeds using the 2/3 power law. They then compared modeled results with the empirical observations. In all, 10 participants moved their hands forward and backward from a common starting position toward 3 targets located within a hemispheric workspace of small or large curvature. Comparisons of modeled observed differences using 2-way RM-ANOVAs showed that movement direction had no clear influence on hand kinetics (p < .05). Workspace curvature affected the hand paths, which seldom followed geodesic lines. Constraining the paths to different curvatures did not affect the hand speed profiles. Minimum-jerk speed profiles closely matched the observations and were superior to those predicted by 2/3 power law (p < .001). The authors conclude that speed and path cannot be unambiguously linked under the minimum-jerk assumption when individuals move the hand in a nonplanar 2-dimensional workspace. In such a case, the hands do not follow geodesic paths, but they preserve the speed profile, regardless of the geometric features of the workspace.
|
|