|
Levin, M. F., Berman, S., Weiss, N., Parmet, Y., Banina, M. C., Frenkel-Toledo, S., et al. (2023). ENHANCE proof-of-concept three-arm randomized trial: effects of reaching training of the hemiparetic upper limb restricted to the spasticity-free elbow range (Vol. 13).
Abstract: Post-stroke motor recovery processes remain unknown. Timescales and patterns of upper-limb (UL) recovery suggest a major impact of biological factors, with modest contributions from rehabilitation. We assessed a novel impairment-based training motivated by motor control theory where reaching occurs within the spasticity-free elbow range. Patients with subacute stroke (</= 6 month; n = 46) and elbow flexor spasticity were randomly allocated to a 10-day UL training protocol, either personalized by restricting reaching to the spasticity-free elbow range defined by the tonic stretch reflex threshold (TSRT) or non-personalized (non-restricted) and with/without anodal transcranial direct current stimulation. Outcomes assessed before, after, and 1 month post-intervention were elbow flexor TSRT angle and reach-to-grasp arm kinematics (primary) and stretch reflex velocity sensitivity, clinical impairment, and activity (secondary). Results were analyzed for 3 groups as well as those of the effects of impairment-based training. Clinical measures improved in both groups. Spasticity-free range training resulted in faster and smoother reaches, smaller (i.e., better) arm-plane path length, and closer-to-normal shoulder/elbow movement patterns. Non-personalized training improved clinical scores without improving arm kinematics, suggesting that clinical measures do not account for movement quality. Impairment-based training within a spasticity-free elbow range is promising since it may improve clinical scores together with arm movement quality.Clinical Trial Registration: URL: http://www.clinicaltrials.gov . Unique Identifier: NCT02725853; Initial registration date: 01/04/2016.
|
|
|
Flash, T., Richardson, M. E., Handzel, A. A., & Liebermann, D. G. (2003). Computational Models and Geometric Approaches in Arm Trajectory Control Studies. In M. L. Latash, & M. F. Levin (Eds.), Progress in Motor Control III: From Basic Science to Applications. Champaign, Il: Human Kinetics.
|
|
|
Liebermann, D. G., & Franks, I. M. (2004). The use of feedback-based technologies in skill acquisition. In M. Hughes, & I.M. Franks (Eds.), Notational analysis of Sport and Coaching Science. E & FN Spon Pub.
|
|
|
Carmeli E., & Liebermann, D. G. (2007). The Function of the Aging Hand. In T. L. Kauffman, M. Moran, & J. Barr (Eds.), The Geriatric Rehabilitation Manual. NY: Elsevier.
|
|
|
Liebermann, D. G. (2008). Biomechanical aspects of motor control in human landing. In R. Bartlett, & Y. Hong (Eds.), Routledge Handbook of Biomechanics and Human Movement Science. Routledge Ltd.
|
|