|
Liebermann, D. G. (2008). Biomechanical aspects of motor control in human landing. In R. Bartlett, & Y. Hong (Eds.), Routledge Handbook of Biomechanics and Human Movement Science. Routledge Ltd.
|
|
|
Liebermann, D. G., & Franks I.M. (2008). Video-feedback and information technologies. In I.M. Franks, & M. Hughes (Eds.), Essentials of notational analysis. E & FN Spon Pub.
|
|
|
Goodman, D., & Liebermann, D. G. (1992). Time-to-contact as a determiner of action: vision and motor control. In D. Elliott, & J. Proteau (Eds.), Vision and Motor Control (pp. 335–349). Amsterdam, Holland: Elsevier Pub. Co.
|
|
|
Liebermann, D. G., Raz, T., & Dickinson, J. (1988). On Intentional and Incidental Learning and Estimation of Temporal and Spatial Information. Journal of Human Movement Studies, 15, 191–204.
|
|
|
Liebermann, D. G., Ben-David, J., Schweitzer, N., Apter, Y., & Parush, A. (1995). A field study of braking reactions during driving I: Triggering and modulation. Ergonomics, 38(9), 1894–1902.
Abstract: The present experiment was carried out to explore the response of driving subjects to emergency braking. The field trial consisted of driving behind a leading vehicle while the following drivers' responses were recorded by telemetry. A group of 51 individuals performed a series of trials at two driving speeds (60 and 80km/h), two following distances (6 and 12 m), and two braking conditions (real and dummy braking). Not all of these subjects completed all conditions or the minimum number of trials. The dependent variables were the total braking time (TBT) and its subcomponents: braking reaction time (BRT), and accelerator-to-brake movement time (MT). These data were analysed in three separate three-way ANOVAs with repeated measures on all factors. The results showed that when subjects were not aware of the forthcoming braking, the distance and braking conditions had major effects on all dependent variables. At the shorter following distance drivers reacted and moved faster. Similarly, when the brakes were real compared with dummy (i.e. brake lights only) drivers reacted faster. In addition, drivers reacted to onset of brake lights in 83% of the cases when dummy braking was applied, compared with 97% when real brakes were applied. Speed of driving did not show any significant effects and did not appear to influence the cognitive or attentional set to anticipate an emergency manoeuvre. These findings suggest that changes in angular velocity during optic expansion of the leading vehicle may be used as a cue to modulate braking movement, while onset of brake lights alone may be enough to trigger a ‘ballistic’ preventive response.
|
|