|
Liebermann, D. G., & Hoffman, J. R. (2005). Timing of preparatory landing responses as a function of availability of optic flow information. J Electromyogr Kinesiol, 15(1), 120–130.
Abstract: This study investigated temporal patterns of EMG activity during self-initiated falls with different optic flow information ('gaze directions'). Onsets of EMG during the flight phase were monitored from five experienced volunteers that completed 72 landings in three gaze directions (downward, mid-range and horizontal) and six heights of fall (10-130 cm). EMG recordings were obtained from the right gastrocnemius, tibialis anterior, biceps femoris and rectus femoris muscles, and used to determine the latency of onset (L(o)) and the perceived time to contact (T(c)). Impacts at touchdown were also monitored using as estimates the major peak of the vertical ground reaction forces (F(max)) normalized to body mass, time to peak (T(max)), peak impulse (I(norm)) normalized to momentum, and rate of change of force (dF(max)/dt). Results showed that L(o) was longer as heights of fall increased, but remained within a narrow time-window at >50 cm landings. No significant differences in L(o) were observed when gaze direction was changed. The relationship between T(c) and flight time followed a linear trend regardless of gaze direction. Gaze direction did not significantly affect the landing impacts. In conclusion, availability of optic flow during landing does not play a major role in triggering the preparatory muscle actions in self-initiated falls. Once a structured landing plan has been acquired, the relevant muscles respond relative to the start of the fall.
|
|
|
Liebermann, D. G., Biess, A., Friedman, J., Gielen, C. C. A. M., & Flash, T. (2006). Intrinsic joint kinematic planning. I: reassessing the Listing's law constraint in the control of three-dimensional arm movements. Exp Brain Res, 171(2), 139–154.
Abstract: This study tested the validity of the assumption that intrinsic kinematic constraints, such as Listing's law, can account for the geometric features of three-dimensional arm movements. In principle, if the arm joints follow a Listing's constraint, the hand paths may be predicted. Four individuals performed 'extended arm', 'radial', 'frontal plane', and 'random mixed' movements to visual targets to test Listing's law assumption. Three-dimensional rotation vectors of the upper arm and forearm were calculated from three-dimensional marker data. Data fitting techniques were used to test Donders' and Listing's laws. The coefficient values obtained from fitting rotation vectors to the surfaces described by a second-order equation were analyzed. The results showed that the coefficients that represent curvature and twist of the surfaces were often not significantly different from zero, particularly not during randomly mixed and extended arm movements. These coefficients for forearm rotations were larger compared to those for the upper arm segment rotations. The mean thickness of the rotation surfaces ranged between approximately 1.7 degrees and 4.7 degrees for the rotation vectors of the upper arm segment and approximately 2.6 degrees and 7.5 degrees for those of the forearm. During frontal plane movements, forearm rotations showed large twist scores while upper arm segment rotations showed large curvatures, although the thickness of the surfaces remained low. The curvatures, but not the thicknesses of the surfaces, were larger for large versus small amplitude radial movements. In conclusion, when examining the surfaces obtained for the different movement types, the rotation vectors may lie within manifolds that are anywhere between curved or twisted manifolds. However, a two-dimensional thick surface may roughly represent a global arm constraint. Our findings suggest that Listing's law is implemented for some types of arm movement, such as pointing to targets with the extended arm and during radial reaching movements.
|
|
|
Liebermann, D. G., Krasovsky, T., & Berman, S. (2008). Planning maximally smooth hand movements constrained to nonplanar workspaces. J Mot Behav, 40(6), 516–531.
Abstract: The article characterizes hand paths and speed profiles for movements performed in a nonplanar, 2-dimensional workspace (a hemisphere of constant curvature). The authors assessed endpoint kinematics (i.e., paths and speeds) under the minimum-jerk model assumptions and calculated minimal amplitude paths (geodesics) and the corresponding speed profiles. The authors also calculated hand speeds using the 2/3 power law. They then compared modeled results with the empirical observations. In all, 10 participants moved their hands forward and backward from a common starting position toward 3 targets located within a hemispheric workspace of small or large curvature. Comparisons of modeled observed differences using 2-way RM-ANOVAs showed that movement direction had no clear influence on hand kinetics (p < .05). Workspace curvature affected the hand paths, which seldom followed geodesic lines. Constraining the paths to different curvatures did not affect the hand speed profiles. Minimum-jerk speed profiles closely matched the observations and were superior to those predicted by 2/3 power law (p < .001). The authors conclude that speed and path cannot be unambiguously linked under the minimum-jerk assumption when individuals move the hand in a nonplanar 2-dimensional workspace. In such a case, the hands do not follow geodesic paths, but they preserve the speed profile, regardless of the geometric features of the workspace.
|
|
|
Liebermann, D. G., & Defrin, R. (2009). Characteristics of the nociceptive withdrawal response elicited under aware and unaware conditions. J Electromyogr Kinesiol, 19(2), e114–22.
Abstract: BACKGROUND: Nociceptive withdrawal reflexes (NWR) are subject to supraspinal modulation. Therefore, awareness about a noxious stimulation may affect its characteristics. The goal of this study was to investigate the effect of different degrees of awareness on the NWR. METHOD: Eight subjects performed back and forth hand movements from a common starting point towards four visual targets during which NWR was evoked when subjects were either unaware or aware of a noxious stimulation (unaware-NWR and aware-NWR). For the comparison between the NWR under both conditions, onset latencies and kinematic variables were computed respectively from the recorded Biceps Brachii EMG and from the spatial coordinates of hand reflective markers. RESULTS: The onset latency of unaware-NWR (mean+/-SD 73.9+/-13 ms) was significantly shorter than that of the aware-NWR (91.1+/-27 ms, p<0.05). The total duration of the muscular activation was shorter in unaware-NWR than in aware-NWR. The slopes of the tangential velocity-time curves were steeper for unaware-NWR than for aware-NWR (p=0.057). CONCLUSIONS: The results suggest that supraspinal regulation of NWR under different degrees of awareness involves the re-parameterization of selected spatiotemporal aspects of a pre-structured motor response.
|
|
|
Lowenthal-Raz, J., Liebermann, D. G., Friedman, J., & Soroker, N. (2024). Kinematic descriptors of arm reaching movement are sensitive to hemisphere-specific immediate neuromodulatory effects of transcranial direct current stimulation post stroke. Sci Rep, 14(1), 11971.
Abstract: Transcranial direct current stimulation (tDCS) exerts beneficial effects on motor recovery after stroke, presumably by enhancement of adaptive neural plasticity. However, patients with extensive damage may experience null or deleterious effects with the predominant application mode of anodal (excitatory) stimulation of the damaged hemisphere. In such cases, excitatory stimulation of the non-damaged hemisphere might be considered. Here we asked whether tDCS exerts a measurable effect on movement quality of the hemiparetic upper limb, following just a single treatment session. Such effect may inform on the hemisphere that should be excited. Using a single-blinded crossover experimental design, stroke patients and healthy control subjects were assessed before and after anodal, cathodal and sham tDCS, each provided during a single session of reaching training (repeated point-to-point hand movement on an electronic tablet). Group comparisons of endpoint kinematics at baseline-number of peaks in the speed profile (NoP; smoothness), hand-path deviations from the straight line (SLD; accuracy) and movement time (MT; speed)-disclosed greater NoP, larger SLD and longer MT in the stroke group. NoP and MT revealed an advantage for anodal compared to sham stimulation of the lesioned hemisphere. NoP and MT improvements under anodal stimulation of the non-lesioned hemisphere correlated positively with the severity of hemiparesis. Damage to specific cortical regions and white-matter tracts was associated with lower kinematic gains from tDCS. The study shows that simple descriptors of movement kinematics of the hemiparetic upper limb are sensitive enough to demonstrate gain from neuromodulation by tDCS, following just a single session of reaching training. Moreover, the results show that tDCS-related gain is affected by the severity of baseline motor impairment, and by lesion topography.
|
|