toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Falk, B.; Eliakim, A.; Dotan, R.; Liebermann, D.G.; Regev, R.; Bar-Or, O. url  openurl
  Title Birth weight and physical ability in 5- to 8-yr-old healthy children born prematurely Type Journal Article
  Year 1997 Publication (up) Medicine and Science in Sports and Exercise Abbreviated Journal Med Sci Sports Exerc  
  Volume 29 Issue 9 Pages 1124-1130  
  Keywords *Birth Weight; Child; Child Development/physiology; Child, Preschool; Female; Follow-Up Studies; Humans; Infant, Newborn; *Infant, Premature; Male; *Motor Skills; *Physical Fitness  
  Abstract Recent advances in perinatal care have resulted in increased survival rates of extremely small and immature newborns. This has resulted in some neurodevelopmental impairment. The purpose of this study was to quantitatively evaluate and compare neuromuscular performance in children born prematurely at various levels of subnormal birth weight (BW). Subjects were 5- to 8-yr-old children born prematurely at different levels of subnormal BW (535-1760 g, N = 22, PM), and age-matched controls born at full term (> 2500 g, N = 15, CON). None of the subjects had any clinically defined neuromuscular disabilities. Body mass (BM) of PM was lower than that of CON (18.3 +/- 2.7 vs 21.7 +/- 3.8 kg) with no difference in height or sum of 4 skinfolds. Peak mechanical power output determined with a 15-s modified Wingate Anaerobic Test and corrected for BM was lower (P = 0.07) in PM than in CON (5.11 +/- 1.07 vs 5.94 +/- 1.00 W.kg-1). This was especially noticeable in children born at extremely low BW (ELBW, < 1000 g, 4.49 +/- 1.04 W.kg-1, P < 0.01). Peak power, determined in a force-plate vertical jump, corrected for BM was lower in PM vs CON (25.5 +/- 5.4 vs 30.8 +/- 5.2 W.kg-1, respectively P = 0.01), especially in the ELBW group (20.0 +/- 5.5 W.kg-1). Similarly, the elapsed time between peak velocity and actual jump take-off was longer in PM than in CON (41.2 +/- 9.4 vs 35.8 +/- 5.8 ms, respectively, P = 0.04). No differences were observed in peak force. The results suggest that performance deficiencies of prematurely-born children may be a result of inferior inter-muscular coordination. The precise neuromotor factors responsible for this should be identified by future research.  
  Address Ribstein Center for Research and Sport Medicine Sciences, Wingate Institute, Netanya, Israel. bfalk@ccsg.tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0195-9131 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9309621 Approved no  
  Call Number Serial 64  
Permanent link to this record
 

 
Author Frenkel-Toledoa, S.; Bentin, S.; Perry, A.; Liebermann, D. G.; Soroker, N. doi  openurl
  Title Mirror-neuron system recruitment by action observation: Effects of focal brain damage on mu suppression Type Journal Article
  Year 2014 Publication (up) NeuroImage Abbreviated Journal  
  Volume 87 Issue Pages 127-137  
  Keywords  
  Abstract Mu suppression is the attenuation of EEG power in the alpha frequency range (8-12 Hz), recorded over the sensorimotor cortex during execution and observation of motor actions. Based on this dual characteristic it is thought to signalize activation of a human analogue of the mirror neuron system (MNS) found in macaque monkeys, though much uncertainty remains concerning its specificity and full significance. To further explore the hypothesized relationship between mu suppression and MNS activation, we investigated how it is affected by damage to cortical regions, including areas where the MNS is thought to reside. EEG was recorded in 33 first-event stroke patients during observation of video-clips showing reaching and grasping hand movements. We examined the modulation of EEG oscillations at central and occipital sites, and analyzed separately the lower (8-10 Hz) and higher (10-12 Hz) segments of the alpha/mu range. Suppression was determined relative to observation of a non-biological movement. Normalized lesion data were used to investigate how damage to regions of the fronto-parietal cortex affects the pattern of suppression. The magnitude of mu suppression during action observation was significantly reduced in the affected hemisphere compared to the unaffected hemisphere. Differences between the hemispheres were significant at central (sensorimotor) sites but not at occipital (visual) sites. Total hemispheric volume loss did not correlate with mu suppression. Suppression in the lower mu range in the unaffected hemisphere (C3) correlated with lesion extent within the right inferior parietal cortex. Our lesion study supports the role of mu suppression as a marker of MNS activation, as suggested by findings gathered in previous studies in normal subjects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 71  
Permanent link to this record
 

 
Author Mindy F. Levin; Osnat Snir; Dario G. Liebermann; Harold Weingarden; Patrice L. Weiss pdf  doi
openurl 
  Title Virtual Reality Versus Conventional Treatment of Reaching Ability in Chronic Stroke: Clinical Feasibility Study Type Journal Article
  Year 2012 Publication (up) Neurology and Therapy Abbreviated Journal  
  Volume 1 Issue 3 Pages 1-15  
  Keywords  
  Abstract Introduction

The objective of this study was to evaluate the potential of exercises performed in a 2D video-capture virtual reality (VR) training environment to improve upper limb motor ability in stroke patients compared to those performed in conventional therapy.

Methods

A small sample randomized control trial, in an outpatient rehabilitation center with 12 patients with chronic stroke, aged 33–80 years, who were randomly allocated to video-capture VR therapy and conventional therapy groups. All patients participated in four clinical evaluation sessions (pre-test 1, pre-test 2, post-test, follow-up) and nine 45-minute intervention sessions over a 3-week period. Main outcomes assessed were Body Structure and Function (impairment: Fugl–Meyer Assessment [FMA]; Composite Spasticity Index [CSI]; Reaching Performance Scale for Stroke), Activity (Box and Blocks; Wolf Motor Function Test [WMFT]), and Participation (Motor Activity Log) levels of the International Classification of Functioning.

Results

Improvements occurred in both groups, but more patients in the VR group improved upper limb clinical impairment (FMA, CSI) and activity scores (WMFT) and improvements occurred earlier. Patients in the VR group also reported satisfaction with the novel treatment.

Conclusions

The modest advantage of VR over conventional training supports further investigation of the effect of video-capture VR or VR combined with conventional therapy in larger-scale randomized, more intense controlled studies.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 42  
Permanent link to this record
 

 
Author Zopf, Regine; Truong, Sandra; Finkbeiner, Matthew; Friedman, Jason; Williams, Mark A pdf  doi
openurl 
  Title Viewing and feeling touch modulates hand position for reaching Type Journal Article
  Year 2011 Publication (up) Neuropsychologia Abbreviated Journal  
  Volume 49 Issue 5 Pages 1287–1293  
  Keywords  
  Abstract Action requires knowledge of our body location in space. Here we asked if interactions with the external world prior to a reaching action influence how visual location information is used. We investigated if the temporal synchrony between viewing and feeling touch modulates the integration of visual and proprioceptive body location information for action. We manipulated the synchrony between viewing and feeling touch in the Rubber Hand Illusion paradigm prior to participants performing a ballistic reaching task to a visually specified target. When synchronous touch was given, reaching trajectories were significantly shifted compared to asynchronous touch. The direction of this shift suggests that touch influences the encoding of hand position for action. On the basis of this data and previous findings, we propose that the brain uses correlated cues from passive touch and vision to update its own position for action and experience of self-location.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Penn State @ write.to.jason @ Serial 23  
Permanent link to this record
 

 
Author Awasthi, Bhuvanesh; Friedman, Jason; Williams, Mark A pdf  doi
openurl 
  Title Processing of low spatial frequency faces at periphery in choice reaching tasks Type Journal Article
  Year 2011 Publication (up) Neuropsychologia Abbreviated Journal  
  Volume 49 Issue 7 Pages 2136-2141  
  Keywords  
  Abstract Various aspects of face processing have been associated with distinct ranges of spatial frequencies. Configural processing of faces depends chiefly on low spatial frequency (LSF) information whereas high spatial frequency (HSF) supports feature based processing. However, it has also been argued that face processing has a foveal-bias (HSF channels dominate the fovea). Here we used reach trajectories as a continuous behavioral measure to study perceptual processing of faces. Experimental stimuli were LSF–HSF hybrids of male and female faces superimposed and were presented peripherally and centrally. Subject reached out to touch a specified sex and their movements were recorded. The reaching trajectories reveal that there is less effect of (interference by) LSF faces at fovea as compared to periphery while reaching to HSF targets. These results demonstrate that peripherally presented LSF information, carried chiefly by magnocellular channels, enables efficient processing of faces, possibly via a retinotectal (subcortical) pathway.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 24  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: