toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Levin, M.F.; Berman, S.; Weiss, N.; Parmet, Y.; Banina, M.C.; Frenkel-Toledo, S.; Soroker, N.; Solomon, J.M.; Liebermann, D.G. url  doi
openurl 
  Title (up) ENHANCE proof-of-concept three-arm randomized trial: effects of reaching training of the hemiparetic upper limb restricted to the spasticity-free elbow range Type
  Year 2023 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 13 Issue 1 Pages 22934  
  Keywords Humans; Elbow; *Transcranial Direct Current Stimulation; Muscle Spasticity/therapy/complications; Upper Extremity; *Elbow Joint; *Stroke/complications; *Stroke Rehabilitation/methods  
  Abstract Post-stroke motor recovery processes remain unknown. Timescales and patterns of upper-limb (UL) recovery suggest a major impact of biological factors, with modest contributions from rehabilitation. We assessed a novel impairment-based training motivated by motor control theory where reaching occurs within the spasticity-free elbow range. Patients with subacute stroke (</= 6 month; n = 46) and elbow flexor spasticity were randomly allocated to a 10-day UL training protocol, either personalized by restricting reaching to the spasticity-free elbow range defined by the tonic stretch reflex threshold (TSRT) or non-personalized (non-restricted) and with/without anodal transcranial direct current stimulation. Outcomes assessed before, after, and 1 month post-intervention were elbow flexor TSRT angle and reach-to-grasp arm kinematics (primary) and stretch reflex velocity sensitivity, clinical impairment, and activity (secondary). Results were analyzed for 3 groups as well as those of the effects of impairment-based training. Clinical measures improved in both groups. Spasticity-free range training resulted in faster and smoother reaches, smaller (i.e., better) arm-plane path length, and closer-to-normal shoulder/elbow movement patterns. Non-personalized training improved clinical scores without improving arm kinematics, suggesting that clinical measures do not account for movement quality. Impairment-based training within a spasticity-free elbow range is promising since it may improve clinical scores together with arm movement quality.Clinical Trial Registration: URL: http://www.clinicaltrials.gov . Unique Identifier: NCT02725853; Initial registration date: 01/04/2016.  
  Address Department of Physical Therapy, Faculty of Medicine, Stanley Steyer School of Health Professions, Tel Aviv University, POB 39040, 61390, Ramat Aviv, Tel Aviv, Israel. dlieberm@tauex.tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:38129527; PMCID:PMC10739929 Approved no  
  Call Number Serial 121  
Permanent link to this record
 

 
Author Banina, M.C.; Molad, R.; Solomon, J.S.; Berman, S.; Soroker, N.; Frenkel-Toledo, S.; Liebermann, D.G.; Levin, M.F. url  doi
openurl 
  Title (up) Exercise intensity of the upper limb can be enhanced using a virtual rehabilitation system Type Journal Article
  Year 2020 Publication Disability and Rehabilitation. Assistive Technology Abbreviated Journal Disabil Rehabil Assist Technol  
  Volume Issue Pages 1-7  
  Keywords Stroke; difficulty; exercise therapy; intensity; personalized exercise; upper limb; virtual reality  
  Abstract Purpose: Motor recovery of the upper limb (UL) is related to exercise intensity, defined as movement repetitions divided by minutes in active therapy, and task difficulty. However, the degree to which UL training in virtual reality (VR) applications deliver intense and challenging exercise and whether these factors are considered in different centres for people with different sensorimotor impairment levels is not evidenced. We determined if (1) a VR programme can deliver high UL exercise intensity in people with sub-acute stroke across different environments and (2) exercise intensity and difficulty differed among patients with different levels of UL sensorimotor impairment.Methods: Participants with sub-acute stroke (<6 months) with Fugl-Meyer scores ranging from 14 to 57, completed 10 approximately 50-min UL training sessions using three unilateral and one bilateral VR activity over 2 weeks in centres located in three countries. Training time, number of movement repetitions, and success rates were extracted from game activity logs. Exercise intensity was calculated for each participant, related to UL impairment, and compared between centres.Results: Exercise intensity was high and was progressed similarly in all centres. Participants had most difficulty with bilateral and lateral reaching activities. Exercise intensity was not, while success rate of only one unilateral activity was related to UL severity.Conclusion: The level of intensity attained with this VR exercise programme was higher than that reported in current stroke therapy practice. Although progression through different activity levels was similar between centres, clearer guidelines for exercise progression should be provided by the VR application.Implications for rehabilitationVR rehabilitation systems can be used to deliver intensive exercise programmes.VR rehabilitation systems need to be designed with measurable progressions through difficulty levels.  
  Address Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Laval, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3107 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32421460 Approved no  
  Call Number Serial 106  
Permanent link to this record
 

 
Author Liebermann, D.G.; Berman, S.; Weingarden H.; Levin, M.F.; Weiss, P.L. doi  openurl
  Title (up) Kinematic features of arm and trunk movements in stroke patients and age-matched healthy controls during reaching in virtual and physical environments Type Conference Article
  Year 2009 Publication Virtual Rehabilitation International Conference Abbreviated Journal  
  Volume Issue Pages 179-184  
  Keywords  
  Abstract Motor performance of stroke patients and healthy individuals was compared in terms of selected kinematic features of arm and trunk movements while subjects reached for visual targets in virtual (VR) and physical (PH) environments. In PH, the targets were placed at an extended arm distance, while in VR comparably placed virtual targets were presented via GestureTek's IREX system. Our goal was to obtain further insights into research methods related to VR-based rehabilitation. Eight right-hemiparetic stroke patients (age =46-87 years) and 8 healthy adults (age =51-73 years) completed 84 reaching movements in VR and PH environments while seated. The results showed that arm and trunk movements differed in the two environments in patients and to a lesser extent in healthy individuals. Arm motion of patients became jerkier in VR, with larger paths and longer movement durations, and presented greater arm torsion (i.e., larger elbow rotations around the hand-shoulder axis). Interestingly, patients also showed a significant reduction of compensatory trunk movements during VR reaching. The findings indicate that when targets were perceived to be beyond hand reach, stroke patients may be less able to estimate 3D virtual target locations obtained from the 2D TV planar displays. This was not the case for healthy participants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 52  
Permanent link to this record
 

 
Author Krasovsky, T.; Berman, S.; Liebermann, D.G. url  doi
openurl 
  Title (up) Kinematic features of continuous hand reaching movements under simple and complex rhythmical constraints Type Journal Article
  Year 2010 Publication Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology Abbreviated Journal J Electromyogr Kinesiol  
  Volume 20 Issue 4 Pages 636-641  
  Keywords *Acoustic Stimulation; Adult; Biomechanics; *Cues; Female; Hand/*physiology; Humans; Male; Movement/*physiology  
  Abstract BACKGROUND: Auditory cues are known to alter movement kinematics in healthy people as well as in people with neurological conditions (e.g., Parkinson's disease or stroke). Pacing movement to rhythmical constraints is known to change both the spatial and temporal features of movement. However, the effect of complexity of pacing on the spatial and temporal kinematic properties is still poorly understood. The current study investigated spatial and temporal aspects of movement (path and speed, respectively) and their integration while subjects followed simple isochronous or complex non-isochronous rhythmical constraints. Spatiotemporal decoupling was expected under the latter constraint. METHODS: Ten subjects performed point-to-point hand movements towards visual targets on the surface of a hemisphere, while following continuous auditory cues of different pace and meter. The spatial and temporal properties of movement were compared to geodesic paths and unimodal bell-shaped speed profiles, respectively. Multiple two-way RM-ANOVAs (pace [1-2 Hz] x meter [duple-triple]) were performed on the different kinematic variables calculated to assess hand deviations from the model data (p< or = 0.05). RESULTS: As expected, increasing pace resulted in straighter hand paths and smoother speed profiles. Meter, however, affected only the path (shorter and straighter under triple) without significantly changing speed. Such an effect was observed at the slow pace only. CONCLUSIONS: Under simple rhythmic cues, an increase in pace causes spontaneous adjustments in spatial features (straighter hand paths) while preserving temporal ones (maximally-smoothed hand speeds). Complex rhythmical cues in contrast perturb spatiotemporal coupling and challenge movement control. These results may have important practical implications in motor rehabilitation.  
  Address Department of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-6411 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20382031 Approved no  
  Call Number Serial 32  
Permanent link to this record
 

 
Author Liebermann, D.G.; Berman, S.; Weiss, P.L.T.; Levin, M.F. url  doi
openurl 
  Title (up) Kinematics of reaching movements in a 2-d virtual environment in adults with and without stroke Type Journal Article
  Year 2012 Publication IEEE Transactions on Neural Systems and Rehabilitation Engineering : a Publication of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal IEEE Trans Neural Syst Rehabil Eng  
  Volume 20 Issue 6 Pages 778-787  
  Keywords  
  Abstract Virtual reality environments are increasingly being used for upper limb rehabilitation in poststroke patients. Our goal was to determine if arm reaching movements made in a 2-D video-capture virtual reality environment are similar to those made in a comparable physical environment. We compared arm and trunk kinematics for reaches made with the right, dominant arm to three targets (14 trials per target) in both environments by 16 adults with right poststroke hemiparesis and by eight healthy age-matched controls. Movement kinematics were recorded with a three-camera optoelectronic system at 100 samples/s. Reaching movements made by both control and stroke subjects were affected by viewing the targets in the video-capture 2-D virtual environment. Movements were slower, shorter, less straight, less accurate and involved smaller ranges of shoulder and elbow joint excursions for target reaches in the virtual environment compared to the physical environment in all subjects. Thus, there was a decrease in the overall movement quality for movements made in the 2-D virtual environment. This suggests that 2-D video-capture virtual reality environments should be used with caution when the goal of the rehabilitation program is to improve the quality of movement patterns of the upper limb.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1534-4320 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22907972 Approved no  
  Call Number Serial 28  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: