|
Records |
Links |
|
Author |
Friedman, Jason; Latash, Mark L.; Zatsiorsky, Vladimir M. |
|
|
Title |
Prehension synergies: a study of digit force adjustments to the continuously varied load force exerted on a partially constrained hand-held object |
Type |
Journal Article |
|
Year |
2009 |
Publication |
Experimental Brain Research |
Abbreviated Journal |
Exp Brain Res |
|
|
Volume |
197 |
Issue |
1 |
Pages |
1-13 |
|
|
Keywords |
|
|
|
Abstract |
We examined how the digit forces adjust when a load force acting on a hand-held object continuously varies. The subjects were required to hold the handle still while a linearly increasing and then decreasing force was applied to the handle. The handle was constrained, such that it could only move up and down, and rotate about a horizontal axis. In addition, the moment arm of the thumb tangential force was 1.5 times the moment arm of the virtual finger (VF, an imagined finger with the mechanical action equal to that of the four fingers) force. Unlike the situation when there are equal moment arms, the experimental setup forced the subjects to choose between (a) sharing equally the increase in load force between the thumb and VF but generating a moment of tangential force, which had to be compensated by negatively co-varying the moment due to normal forces, or (b) sharing unequally the load force increase between the thumb and VF but preventing generation of a moment of tangential forces. We found that different subjects tended to use one of these two strategies. These findings suggest that the selection by the CNS of prehension synergies at the VF-thumb level with respect to the moment of force is non-obligatory and reflects individual subject preferences. This unequal sharing of the load by the tangential forces, in contrast to the previously observed equal sharing, suggests that the invariant feature of prehension may be a correlated increase in tangential forces rather than an equal increase. |
|
|
Address |
Department of Kinesiology, The Pennsylvania State University, 39 Recreation Building, University Park, PA, 16802, USA, jason.friedman@psu.edu |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1432-1106 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:19554319 |
Approved |
no |
|
|
Call Number |
Penn State @ write.to.jason @ |
Serial |
16 |
|
Permanent link to this record |
|
|
|
|
Author |
Friedman, Jason; Flash, Tamar |
|
|
Title |
Trajectory of the index finger during grasping |
Type |
Journal Article |
|
Year |
2009 |
Publication |
Experimental Brain Research |
Abbreviated Journal |
Exp Brain Res |
|
|
Volume |
196 |
Issue |
4 |
Pages |
497-509 |
|
|
Keywords |
|
|
|
Abstract |
The trajectory of the index finger during grasping movements was compared to the trajectories predicted by three optimization-based models. The three models consisted of minimizing the integral of the weighted squared joint derivatives along the path (inertia-like cost), minimizing torque change, and minimizing angular jerk. Of the three models, it was observed that the path of the fingertip and the joint trajectories, were best described by the minimum angular jerk model. This model, which does not take into account the dynamics of the finger, performed equally well when the inertia of the finger was altered by adding a 20 g weight to the medial phalange. Thus, for the finger, it appears that trajectories are planned based primarily on kinematic considerations at a joint level. |
|
|
Address |
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, write.to.jason@gmail.com |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1432-1106 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:19521692 |
Approved |
no |
|
|
Call Number |
Penn State @ write.to.jason @ |
Serial |
17 |
|
Permanent link to this record |
|
|
|
|
Author |
Shaklai, S.; Mimouni-Bloch, A.; Levin, M.; Friedman, J. |
|
|
Title |
Development of finger force coordination in children |
Type |
Journal Article |
|
Year |
2017 |
Publication |
Experimental Brain Research |
Abbreviated Journal |
|
|
|
Volume |
235 |
Issue |
12 |
Pages |
3709–3720 |
|
|
Keywords |
|
|
|
Abstract |
Coordination is often observed as body parts moving together. However, when producing force with multiple fingers, the optimal coordination is not to produce similar forces with each finger, but rather for each finger to correct mistakes of other fingers. In this study, we aim to determine whether and how this skill develops in children aged 4-12 years. We measured this sort of coordination using the uncontrolled manifold hypothesis (UCM). We recorded finger forces produced by 60 typically developing children aged between 4 and 12 years in a finger-pressing task. The children controlled the height of an object on a screen by the total amount of force they produced on force sensors. We found that the synergy index, a measure of the relationship between “good” and “bad” variance, increased linearly as a function of age. This improvement was achieved by a selective reduction in “bad” variance rather than an increase in “good” variance. We did not observe differences between males and females, and the synergy index was not able to predict outcomes of upper limb behavioral tests after controlling for age. As children develop between the ages of 4 and 12 years, their ability to produce negative covariation between their finger forces improves, likely related to their improved ability to perform dexterous tasks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1432-1106 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
Shaklai2017 |
Serial |
86 |
|
Permanent link to this record |
|
|
|
|
Author |
Krasovsky, T.; Keren-Capelovitch, T.; Friedman, J.; Weiss, P.L. |
|
|
Title |
Self-feeding kinematics in an ecological setting: typically developing children and children with cerebral palsy |
Type |
Journal Article |
|
Year |
2021 |
Publication |
IEEE Transactions on Neural Systems and Rehabilitation Engineering : a Publication of the IEEE Engineering in Medicine and Biology Society |
Abbreviated Journal |
IEEE Trans Neural Syst Rehabil Eng |
|
|
Volume |
29 |
Issue |
|
Pages |
1462-1469 |
|
|
Keywords |
|
|
|
Abstract |
Assessment of self-feeding kinematics is seldom performed in an ecological setting. In preparation for development of an instrumented spoon for measurement of self-feeding in children with cerebral palsy (CP), the current work aimed to evaluate upper extremity kinematics of self-feeding in young children with typical development (TD) and a small, age-matched group of children with CP in a familiar setting, while eating with a spoon. METHODS: Sixty-five TD participants and six children diagnosed with spastic CP, aged 3-9 years, fed themselves while feeding was measured using miniature three-dimensional motion capture sensors (trakStar). Kinematic variables associated with different phases of self-feeding cycle (movement time, curvature, time to peak velocity and smoothness) were compared across age-groups in the TD sample and between TD children and those with CP. RESULTS: Significant between-age group differences were identified in movement times, time to peak velocity and curvature. Children with CP demonstrated slower, less smooth self-feeding movements, potentially related to activity limitations. CONCLUSIONS: The identified kinematic variables form a basis for implementation of self-feeding performance assessment in children of different ages, including those with CP, which can be deployed via an instrumented spoon. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1534-4320 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:34280104 |
Approved |
no |
|
|
Call Number |
|
Serial |
110 |
|
Permanent link to this record |
|
|
|
|
Author |
Awasthi, B.; Sowman, P.F.; Friedman, J.; Williams, M.A. |
|
|
Title |
Distinct spatial scale sensitivities for early categorisation of Faces and Places: Neuromagnetic and Behavioural Findings |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Frontiers in Human Neuroscience |
Abbreviated Journal |
|
|
|
Volume |
7 |
Issue |
91 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Research exploring the role of spatial frequencies in rapid stimulus detection and categorisation report flexible reliance on specific spatial frequency bands. Here, through a set of behavioural and magnetoencephalography (MEG) experiments, we investigated the role of low spatial frequency (LSF)(25 cpf) information during the categorisation of faces and places. Reaction time measures revealed significantly faster categorisation of faces driven by LSF information, while rapid categorisation of places was facilitated by HSF information. The MEG study showed significantly earlier latency of the M170 component for LSF faces compared to HSF faces. Moreover, the M170 amplitude was larger for LSF faces than for LSF places, whereas the reverse pattern was evident for HSF faces and places. These results suggest that spatial frequency modulates the processing of category specific information for faces and places. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1662-5161 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
67 |
|
Permanent link to this record |