toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Friedman, Jason; Flash, Tamar pdf  url
doi  openurl
  Title Trajectory of the index finger during grasping Type Journal Article
  Year 2009 Publication (up) Experimental Brain Research Abbreviated Journal Exp Brain Res  
  Volume 196 Issue 4 Pages 497-509  
  Keywords  
  Abstract The trajectory of the index finger during grasping movements was compared to the trajectories predicted by three optimization-based models. The three models consisted of minimizing the integral of the weighted squared joint derivatives along the path (inertia-like cost), minimizing torque change, and minimizing angular jerk. Of the three models, it was observed that the path of the fingertip and the joint trajectories, were best described by the minimum angular jerk model. This model, which does not take into account the dynamics of the finger, performed equally well when the inertia of the finger was altered by adding a 20 g weight to the medial phalange. Thus, for the finger, it appears that trajectories are planned based primarily on kinematic considerations at a joint level.  
  Address Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel, write.to.jason@gmail.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1432-1106 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19521692 Approved no  
  Call Number Penn State @ write.to.jason @ Serial 17  
Permanent link to this record
 

 
Author Kapur, Shweta; Friedman, Jason; Zatsiorsky, Vladimir M.; Latash, Mark L. pdf  doi
openurl 
  Title Finger interaction in a three-dimensional pressing task Type Journal Article
  Year 2010 Publication (up) Experimental Brain Research Abbreviated Journal  
  Volume 203 Issue 1 Pages 101-118  
  Keywords  
  Abstract Accurate control of forces produced by the fingers is essential for performing object manipulation. This study examines the indices of finger interaction when accurate time profiles of force are produced in different directions, while using one of the fingers or all four fingers of the hand. We hypothesized that patterns of unintended force production among shear force components may involve features not observed in the earlier studies of vertical force production. In particular, we expected to see unintended forces generated by non-task fingers not in the

direction on the instructed force but in the opposite direction as well as substantial force production in directions orthogonal to the instructed direction. We also tested a hypothesis that multi-finger synergies, quantified using the framework of the uncontrolled manifold hypothesis, will help reduce across-trials variance of both total force magnitude and direction. Young, healthy subjects were required to produce accurate ramps of force in five different directions by

pressing on force sensors with the fingers of the right (dominant) hand. The index finger induced the smallest unintended forces in non-task fingers. The little finger showed the smallest unintended forces when it was a non-task finger. Task fingers showed substantial force production in directions orthogonal to the intended force direction. During four-finger tasks, individual force vectors typically pointed off the task direction, with these deviations nearly

perfectly matched to produce a resultant force in the task direction. Multi-finger synergy indices reflected strong co-variation in the space of finger modes (commands to fingers) that reduced variability of the total force magnitude and direction across trials. The synergy indices increased in magnitude over the first 30% of the trial time and then stayed at a nearly constant level. The synergy index for stabilization of total force magnitude was higher for shear force components as compared to the downward pressing force component. The results suggest complex interactions between enslaving and synergic force adjustments, possibly reflecting the experience with everyday prehensile tasks. For the first time, the data document multi-finger synergies stabilizing both shear force magnitude and force vector direction. These synergies may play a major role in

stabilizing the hand action during object manipulation.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes in press Approved no  
  Call Number Penn State @ write.to.jason @ Serial 20  
Permanent link to this record
 

 
Author Friedman, Jason; Brown, Scott; Finkbeiner, Matthew pdf  doi
openurl 
  Title Linking cognitive and reaching trajectories via intermittent movement control Type Journal Article
  Year 2013 Publication (up) Journal of Mathematical Psychology Abbreviated Journal  
  Volume 57 Issue 3-4 Pages 140-151  
  Keywords Decision making; Diffusion model; Reaction times; Arm movements; Submovements  
  Abstract Theories of decision-making have traditionally been constrained by reaction time data. A limitation of reaction time data, particularly for studying the temporal dynamics of cognitive processing, is that they index only the endpoint of the decision making process. Recently, physical reaching trajectories have been used as proxies for underlying mental trajectories through decision space. We suggest that this approach has been oversimplified: while it is possible for the motor control system to access the current state of the evidence accumulation process, this access is intermittent. Instead, we demonstrate how a model of arm movements that assumes intermittent, not continuous, access to the decision process is sufficient to describe the effects of stimulus quality and viewing time in curved reaching movements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 70  
Permanent link to this record
 

 
Author Zopf, Regine; Truong, Sandra; Finkbeiner, Matthew; Friedman, Jason; Williams, Mark A pdf  doi
openurl 
  Title Viewing and feeling touch modulates hand position for reaching Type Journal Article
  Year 2011 Publication (up) Neuropsychologia Abbreviated Journal  
  Volume 49 Issue 5 Pages 1287–1293  
  Keywords  
  Abstract Action requires knowledge of our body location in space. Here we asked if interactions with the external world prior to a reaching action influence how visual location information is used. We investigated if the temporal synchrony between viewing and feeling touch modulates the integration of visual and proprioceptive body location information for action. We manipulated the synchrony between viewing and feeling touch in the Rubber Hand Illusion paradigm prior to participants performing a ballistic reaching task to a visually specified target. When synchronous touch was given, reaching trajectories were significantly shifted compared to asynchronous touch. The direction of this shift suggests that touch influences the encoding of hand position for action. On the basis of this data and previous findings, we propose that the brain uses correlated cues from passive touch and vision to update its own position for action and experience of self-location.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Penn State @ write.to.jason @ Serial 23  
Permanent link to this record
 

 
Author Awasthi, Bhuvanesh; Friedman, Jason; Williams, Mark A pdf  doi
openurl 
  Title Processing of low spatial frequency faces at periphery in choice reaching tasks Type Journal Article
  Year 2011 Publication (up) Neuropsychologia Abbreviated Journal  
  Volume 49 Issue 7 Pages 2136-2141  
  Keywords  
  Abstract Various aspects of face processing have been associated with distinct ranges of spatial frequencies. Configural processing of faces depends chiefly on low spatial frequency (LSF) information whereas high spatial frequency (HSF) supports feature based processing. However, it has also been argued that face processing has a foveal-bias (HSF channels dominate the fovea). Here we used reach trajectories as a continuous behavioral measure to study perceptual processing of faces. Experimental stimuli were LSF–HSF hybrids of male and female faces superimposed and were presented peripherally and centrally. Subject reached out to touch a specified sex and their movements were recorded. The reaching trajectories reveal that there is less effect of (interference by) LSF faces at fovea as compared to periphery while reaching to HSF targets. These results demonstrate that peripherally presented LSF information, carried chiefly by magnocellular channels, enables efficient processing of faces, possibly via a retinotectal (subcortical) pathway.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 24  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: