toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Liebermann, D.G.; Berman, S.; Weingarden H.; Levin, M.F.; Weiss, P.L. doi  openurl
  Title Kinematic features of arm and trunk movements in stroke patients and age-matched healthy controls during reaching in virtual and physical environments Type Conference Article
  Year 2009 Publication Virtual Rehabilitation International Conference Abbreviated Journal  
  Volume Issue Pages 179-184  
  Keywords  
  Abstract Motor performance of stroke patients and healthy individuals was compared in terms of selected kinematic features of arm and trunk movements while subjects reached for visual targets in virtual (VR) and physical (PH) environments. In PH, the targets were placed at an extended arm distance, while in VR comparably placed virtual targets were presented via GestureTek's IREX system. Our goal was to obtain further insights into research methods related to VR-based rehabilitation. Eight right-hemiparetic stroke patients (age =46-87 years) and 8 healthy adults (age =51-73 years) completed 84 reaching movements in VR and PH environments while seated. The results showed that arm and trunk movements differed in the two environments in patients and to a lesser extent in healthy individuals. Arm motion of patients became jerkier in VR, with larger paths and longer movement durations, and presented greater arm torsion (i.e., larger elbow rotations around the hand-shoulder axis). Interestingly, patients also showed a significant reduction of compensatory trunk movements during VR reaching. The findings indicate that when targets were perceived to be beyond hand reach, stroke patients may be less able to estimate 3D virtual target locations obtained from the 2D TV planar displays. This was not the case for healthy participants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 52  
Permanent link to this record
 

 
Author Frenkel-Toledo, S.; Yamanaka, J.; Friedman, J.; Feldman, A.G.; Levin, M.F. pdf  url
doi  openurl
  Title Referent control of anticipatory grip force during reaching in stroke: an experimental and modeling study Type Journal Article
  Year 2019 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res  
  Volume 237 Issue 7 Pages 1655-1672  
  Keywords Anticipatory grip force; Referent control; Stroke  
  Abstract To evaluate normal and impaired control of anticipatory grip force (GF) modulation, we compared GF production during horizontal arm movements in healthy and post-stroke subjects, and, based on a physiologically feasible dynamic model, determined referent control variables underlying the GF-arm motion coordination in each group. 63% of 13 healthy and 48% of 13 stroke subjects produced low sustained initial force (< 10 N) and increased GF prior to arm movement. Movement-related GF increases were higher during fast compared to self-paced arm extension movements only in the healthy group. Differences in the patterns of anticipatory GF increases before the arm movement onset between groups occurred during fast extension arm movement only. In the stroke group, longer delays between the onset of GF change and elbow motion were related to clinical upper limb deficits. Simulations showed that GFs could emerge from the difference between the actual and the referent hand aperture (Ra) specified by the CNS. Similarly, arm movement could result from changes in the referent elbow position (Re) and could be affected by the co-activation (C) command. A subgroup of stroke subjects, who increased GF before arm movement, could specify different patterns of the referent variables while reproducing the healthy typical pattern of GF-arm coordination. Stroke subjects, who increased GF after arm movement onset, also used different referent strategies than controls. Thus, altered anticipatory GF behavior in stroke subjects may be explained by deficits in referent control.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 0014-4819 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30976821 Approved no  
  Call Number Serial 98  
Permanent link to this record
 

 
Author Merdler, T.; Liebermann, D.G.; Levin, M.F.; Berman, S. url  doi
openurl 
  Title Arm-plane representation of shoulder compensation during pointing movements in patients with stroke Type Journal Article
  Year 2013 Publication Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology Abbreviated Journal J Electromyogr Kinesiol  
  Volume 23 Issue 4 Pages 938–947  
  Keywords Kinematics; Arm movement; Rehabilitation  
  Abstract Improvements in functional motor activities are often accompanied by motor compensations to overcome persistent motor impairment in the upper limb. Kinematic analysis is used to objectively quantify movement patterns including common motor compensations such as excessive trunk displacement during reaching. However, a common motor compensation to assist reaching, shoulder abduction, is not adequately characterized by current motion analysis approaches. We apply the arm-plane representation that accounts for the co-variation between movements of the whole arm, and investigate its ability to identify and quantify compensatory arm movements in stroke subjects when making forward arm reaches. This method has not been previously applied to the analysis of motion deficits. Sixteen adults with right post-stroke hemiparesis and eight healthy age-matched controls reached in three target directions (14 trials/target; sampling rate: 100Hz). Arm-plane movement was validated against endpoint, joint, and trunk kinematics and compared between groups. In stroke subjects, arm-plane measures were correlated with arm impairment (Fugl-Meyer Assessment) and ability (Box and Blocks) scores and were more sensitive than clinical measures to detect mild motor impairment. Arm-plane motion analysis provides new information about motor compensations involving the co-variation of shoulder and elbow movements that may help to understand the underlying motor deficits in patients with stroke.  
  Address Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1050-6411 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23566477 Approved no  
  Call Number Serial 69  
Permanent link to this record
 

 
Author Shaklai, S.; Mimouni-Bloch, A.; Levin, M.; Friedman, J. pdf  url
doi  openurl
  Title Development of finger force coordination in children Type Journal Article
  Year 2017 Publication Experimental Brain Research Abbreviated Journal  
  Volume 235 Issue 12 Pages 3709–3720  
  Keywords  
  Abstract Coordination is often observed as body parts moving together. However, when producing force with multiple fingers, the optimal coordination is not to produce similar forces with each finger, but rather for each finger to correct mistakes of other fingers. In this study, we aim to determine whether and how this skill develops in children aged 4-12 years. We measured this sort of coordination using the uncontrolled manifold hypothesis (UCM). We recorded finger forces produced by 60 typically developing children aged between 4 and 12 years in a finger-pressing task. The children controlled the height of an object on a screen by the total amount of force they produced on force sensors. We found that the synergy index, a measure of the relationship between “good” and “bad” variance, increased linearly as a function of age. This improvement was achieved by a selective reduction in “bad” variance rather than an increase in “good” variance. We did not observe differences between males and females, and the synergy index was not able to predict outcomes of upper limb behavioral tests after controlling for age. As children develop between the ages of 4 and 12 years, their ability to produce negative covariation between their finger forces improves, likely related to their improved ability to perform dexterous tasks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1432-1106 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Shaklai2017 Serial 86  
Permanent link to this record
 

 
Author Liebermann, D.G.; Berman, S.; Weiss, P.L.T.; Levin, M.F. url  doi
openurl 
  Title Kinematics of reaching movements in a 2-d virtual environment in adults with and without stroke Type Journal Article
  Year 2012 Publication IEEE Transactions on Neural Systems and Rehabilitation Engineering : a Publication of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal IEEE Trans Neural Syst Rehabil Eng  
  Volume 20 Issue 6 Pages 778-787  
  Keywords  
  Abstract Virtual reality environments are increasingly being used for upper limb rehabilitation in poststroke patients. Our goal was to determine if arm reaching movements made in a 2-D video-capture virtual reality environment are similar to those made in a comparable physical environment. We compared arm and trunk kinematics for reaches made with the right, dominant arm to three targets (14 trials per target) in both environments by 16 adults with right poststroke hemiparesis and by eight healthy age-matched controls. Movement kinematics were recorded with a three-camera optoelectronic system at 100 samples/s. Reaching movements made by both control and stroke subjects were affected by viewing the targets in the video-capture 2-D virtual environment. Movements were slower, shorter, less straight, less accurate and involved smaller ranges of shoulder and elbow joint excursions for target reaches in the virtual environment compared to the physical environment in all subjects. Thus, there was a decrease in the overall movement quality for movements made in the 2-D virtual environment. This suggests that 2-D video-capture virtual reality environments should be used with caution when the goal of the rehabilitation program is to improve the quality of movement patterns of the upper limb.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN (up) 1534-4320 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22907972 Approved no  
  Call Number Serial 28  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: