toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Frenkel-Toledo, S.; Levin, M.F.; Berman, S.; Liebermann, D.G.; Baniña, M.C.; Solomon, J.M.; Ofir-Geva, S.; Soroker, N. url  doi
openurl 
  Title (down) Shared and distinct voxel-based lesion-symptom mappings for spasticity and impaired movement in the hemiparetic upper limb Type Journal Article
  Year 2022 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 12 Issue 1 Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 113  
Permanent link to this record
 

 
Author Davidowitz, I.; Parmet, Y.; Frenkel-Toledo, S.; Banina, M.C.; Soroker, N.; Solomon, J.M.; Liebermann, D.G.; Levin, M.F.; Berman, S. url  doi
openurl 
  Title (down) Relationship Between Spasticity and Upper-Limb Movement Disorders in Individuals With Subacute Stroke Using Stochastic Spatiotemporal Modeling Type Journal Article
  Year 2019 Publication Neurorehabilitation and Neural Repair Abbreviated Journal Neurorehabil Neural Repair  
  Volume 33 Issue 2 Pages 141-152  
  Keywords Gaussian mixture model; Kullback-Liebler divergence; spasticity; stroke; upper-limb kinematics  
  Abstract BACKGROUND: Spasticity is common in patients with stroke, yet current quantification methods are insufficient for determining the relationship between spasticity and voluntary movement deficits. This is partly a result of the effects of spasticity on spatiotemporal characteristics of movement and the variability of voluntary movement. These can be captured by Gaussian mixture models (GMMs). OBJECTIVES: To determine the influence of spasticity on upper-limb voluntary motion, as assessed by the bidirectional Kullback-Liebler divergence (BKLD) between motion GMMs. METHODS: A total of 16 individuals with subacute stroke and 13 healthy aged-equivalent controls reached to grasp 4 targets (near-center, contralateral, far-center, and ipsilateral). Two-dimensional GMMs (angle and time) were estimated for elbow extension motion. BKLD was computed for each individual and target, within the control group and between the control and stroke groups. Movement time, final elbow angle, average elbow velocity, and velocity smoothness were computed. RESULTS: Between-group BKLDs were much larger than within control-group BKLDs. Between-group BKLDs for the near-center target were lower than those for the far-center and contralateral targets, but similar to that for the ipsilateral target. For those with stroke, the final angle was lower for the near-center target, and the average velocity was higher. Velocity smoothness was lower for the near-center than for the ipsilateral target. Elbow flexor and extensor passive muscle resistance (Modified Ashworth Scale) strongly explained BKLD values. CONCLUSIONS: Results support the view that individuals with poststroke spasticity have a velocity-dependent reduction in active elbow joint range and that BKLD can be used as an objective measure of the effects of spasticity on reaching kinematics.  
  Address 1 Ben-Gurion University of the Negev, Beer-Sheva, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1545-9683 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30744528 Approved no  
  Call Number Serial 93  
Permanent link to this record
 

 
Author Frenkel-Toledo, S.; Yamanaka, J.; Friedman, J.; Feldman, A.G.; Levin, M.F. pdf  url
doi  openurl
  Title (down) Referent control of anticipatory grip force during reaching in stroke: an experimental and modeling study Type Journal Article
  Year 2019 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res  
  Volume 237 Issue 7 Pages 1655-1672  
  Keywords Anticipatory grip force; Referent control; Stroke  
  Abstract To evaluate normal and impaired control of anticipatory grip force (GF) modulation, we compared GF production during horizontal arm movements in healthy and post-stroke subjects, and, based on a physiologically feasible dynamic model, determined referent control variables underlying the GF-arm motion coordination in each group. 63% of 13 healthy and 48% of 13 stroke subjects produced low sustained initial force (< 10 N) and increased GF prior to arm movement. Movement-related GF increases were higher during fast compared to self-paced arm extension movements only in the healthy group. Differences in the patterns of anticipatory GF increases before the arm movement onset between groups occurred during fast extension arm movement only. In the stroke group, longer delays between the onset of GF change and elbow motion were related to clinical upper limb deficits. Simulations showed that GFs could emerge from the difference between the actual and the referent hand aperture (Ra) specified by the CNS. Similarly, arm movement could result from changes in the referent elbow position (Re) and could be affected by the co-activation (C) command. A subgroup of stroke subjects, who increased GF before arm movement, could specify different patterns of the referent variables while reproducing the healthy typical pattern of GF-arm coordination. Stroke subjects, who increased GF after arm movement onset, also used different referent strategies than controls. Thus, altered anticipatory GF behavior in stroke subjects may be explained by deficits in referent control.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-4819 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30976821 Approved no  
  Call Number Serial 98  
Permanent link to this record
 

 
Author Levin, M.F.; Banina, M.C.; Frenkel-Toledo, S.; Berman, S.; Soroker, N.; Solomon, J.M.; Liebermann, D.G. url  doi
openurl 
  Title (down) Personalized upper limb training combined with anodal-tDCS for sensorimotor recovery in spastic hemiparesis: study protocol for a randomized controlled trial Type Journal Article
  Year 2018 Publication Trials Abbreviated Journal Trials  
  Volume 19 Issue 1 Pages 7  
  Keywords Neurorehabilitation; Spasticity; Spatial threshold; Stroke; tDCS  
  Abstract BACKGROUND: Recovery of voluntary movement is a main rehabilitation goal. Efforts to identify effective upper limb (UL) interventions after stroke have been unsatisfactory. This study includes personalized impairment-based UL reaching training in virtual reality (VR) combined with non-invasive brain stimulation to enhance motor learning. The approach is guided by limiting reaching training to the angular zone in which active control is preserved (“active control zone”) after identification of a “spasticity zone”. Anodal transcranial direct current stimulation (a-tDCS) is used to facilitate activation of the affected hemisphere and enhance inter-hemispheric balance. The purpose of the study is to investigate the effectiveness of personalized reaching training, with and without a-tDCS, to increase the range of active elbow control and improve UL function. METHODS: This single-blind randomized controlled trial will take place at four academic rehabilitation centers in Canada, India and Israel. The intervention involves 10 days of personalized VR reaching training with both groups receiving the same intensity of treatment. Participants with sub-acute stroke aged 25 to 80 years with elbow spasticity will be randomized to one of three groups: personalized training (reaching within individually determined active control zones) with a-tDCS (group 1) or sham-tDCS (group 2), or non-personalized training (reaching regardless of active control zones) with a-tDCS (group 3). A baseline assessment will be performed at randomization and two follow-up assessments will occur at the end of the intervention and at 1 month post intervention. Main outcomes are elbow-flexor spatial threshold and ratio of spasticity zone to full elbow-extension range. Secondary outcomes include the Modified Ashworth Scale, Fugl-Meyer Assessment, Streamlined Wolf Motor Function Test and UL kinematics during a standardized reach-to-grasp task. DISCUSSION: This study will provide evidence on the effectiveness of personalized treatment on spasticity and UL motor ability and feasibility of using low-cost interventions in low-to-middle-income countries. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT02725853 . Initially registered on 12 January 2016.  
  Address Department of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1745-6215 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29301545 Approved no  
  Call Number Serial 87  
Permanent link to this record
 

 
Author Liebermann, D.G.; Berman, S.; Weiss, P.L.T.; Levin, M.F. url  doi
openurl 
  Title (down) Kinematics of reaching movements in a 2-d virtual environment in adults with and without stroke Type Journal Article
  Year 2012 Publication IEEE Transactions on Neural Systems and Rehabilitation Engineering : a Publication of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal IEEE Trans Neural Syst Rehabil Eng  
  Volume 20 Issue 6 Pages 778-787  
  Keywords  
  Abstract Virtual reality environments are increasingly being used for upper limb rehabilitation in poststroke patients. Our goal was to determine if arm reaching movements made in a 2-D video-capture virtual reality environment are similar to those made in a comparable physical environment. We compared arm and trunk kinematics for reaches made with the right, dominant arm to three targets (14 trials per target) in both environments by 16 adults with right poststroke hemiparesis and by eight healthy age-matched controls. Movement kinematics were recorded with a three-camera optoelectronic system at 100 samples/s. Reaching movements made by both control and stroke subjects were affected by viewing the targets in the video-capture 2-D virtual environment. Movements were slower, shorter, less straight, less accurate and involved smaller ranges of shoulder and elbow joint excursions for target reaches in the virtual environment compared to the physical environment in all subjects. Thus, there was a decrease in the overall movement quality for movements made in the 2-D virtual environment. This suggests that 2-D video-capture virtual reality environments should be used with caution when the goal of the rehabilitation program is to improve the quality of movement patterns of the upper limb.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1534-4320 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22907972 Approved no  
  Call Number Serial 28  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: