|
Records |
Links |
|
Author |
Banina, M.C.; Molad, R.; Solomon, J.S.; Berman, S.; Soroker, N.; Frenkel-Toledo, S.; Liebermann, D.G.; Levin, M.F. |
|
|
Title |
Exercise intensity of the upper limb can be enhanced using a virtual rehabilitation system |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Disability and Rehabilitation. Assistive Technology |
Abbreviated Journal |
Disabil Rehabil Assist Technol |
|
|
Volume |
|
Issue |
|
Pages |
1-7 |
|
|
Keywords |
Stroke; difficulty; exercise therapy; intensity; personalized exercise; upper limb; virtual reality |
|
|
Abstract |
Purpose: Motor recovery of the upper limb (UL) is related to exercise intensity, defined as movement repetitions divided by minutes in active therapy, and task difficulty. However, the degree to which UL training in virtual reality (VR) applications deliver intense and challenging exercise and whether these factors are considered in different centres for people with different sensorimotor impairment levels is not evidenced. We determined if (1) a VR programme can deliver high UL exercise intensity in people with sub-acute stroke across different environments and (2) exercise intensity and difficulty differed among patients with different levels of UL sensorimotor impairment.Methods: Participants with sub-acute stroke (<6 months) with Fugl-Meyer scores ranging from 14 to 57, completed 10 approximately 50-min UL training sessions using three unilateral and one bilateral VR activity over 2 weeks in centres located in three countries. Training time, number of movement repetitions, and success rates were extracted from game activity logs. Exercise intensity was calculated for each participant, related to UL impairment, and compared between centres.Results: Exercise intensity was high and was progressed similarly in all centres. Participants had most difficulty with bilateral and lateral reaching activities. Exercise intensity was not, while success rate of only one unilateral activity was related to UL severity.Conclusion: The level of intensity attained with this VR exercise programme was higher than that reported in current stroke therapy practice. Although progression through different activity levels was similar between centres, clearer guidelines for exercise progression should be provided by the VR application.Implications for rehabilitationVR rehabilitation systems can be used to deliver intensive exercise programmes.VR rehabilitation systems need to be designed with measurable progressions through difficulty levels. |
|
|
Address |
Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Laval, Canada |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1748-3107 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:32421460 |
Approved |
no |
|
|
Call Number |
|
Serial |
106 |
|
Permanent link to this record |
|
|
|
|
Author |
Liebermann, D.G.; Berman, S.; Weingarden H.; Levin, M.F.; Weiss, P.L. |
|
|
Title |
Kinematic features of arm and trunk movements in stroke patients and age-matched healthy controls during reaching in virtual and physical environments |
Type |
Conference Article |
|
Year |
2009 |
Publication |
Virtual Rehabilitation International Conference |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
179-184 |
|
|
Keywords |
|
|
|
Abstract |
Motor performance of stroke patients and healthy individuals was compared in terms of selected kinematic features of arm and trunk movements while subjects reached for visual targets in virtual (VR) and physical (PH) environments. In PH, the targets were placed at an extended arm distance, while in VR comparably placed virtual targets were presented via GestureTek's IREX system. Our goal was to obtain further insights into research methods related to VR-based rehabilitation. Eight right-hemiparetic stroke patients (age =46-87 years) and 8 healthy adults (age =51-73 years) completed 84 reaching movements in VR and PH environments while seated. The results showed that arm and trunk movements differed in the two environments in patients and to a lesser extent in healthy individuals. Arm motion of patients became jerkier in VR, with larger paths and longer movement durations, and presented greater arm torsion (i.e., larger elbow rotations around the hand-shoulder axis). Interestingly, patients also showed a significant reduction of compensatory trunk movements during VR reaching. The findings indicate that when targets were perceived to be beyond hand reach, stroke patients may be less able to estimate 3D virtual target locations obtained from the 2D TV planar displays. This was not the case for healthy participants. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
|
Serial |
52 |
|
Permanent link to this record |
|
|
|
|
Author |
Liebermann, D.G.; Berman, S.; Weiss, P.L.T.; Levin, M.F. |
|
|
Title |
Kinematics of reaching movements in a 2-d virtual environment in adults with and without stroke |
Type |
Journal Article |
|
Year |
2012 |
Publication |
IEEE Transactions on Neural Systems and Rehabilitation Engineering : a Publication of the IEEE Engineering in Medicine and Biology Society |
Abbreviated Journal |
IEEE Trans Neural Syst Rehabil Eng |
|
|
Volume |
20 |
Issue |
6 |
Pages |
778-787 |
|
|
Keywords |
|
|
|
Abstract |
Virtual reality environments are increasingly being used for upper limb rehabilitation in poststroke patients. Our goal was to determine if arm reaching movements made in a 2-D video-capture virtual reality environment are similar to those made in a comparable physical environment. We compared arm and trunk kinematics for reaches made with the right, dominant arm to three targets (14 trials per target) in both environments by 16 adults with right poststroke hemiparesis and by eight healthy age-matched controls. Movement kinematics were recorded with a three-camera optoelectronic system at 100 samples/s. Reaching movements made by both control and stroke subjects were affected by viewing the targets in the video-capture 2-D virtual environment. Movements were slower, shorter, less straight, less accurate and involved smaller ranges of shoulder and elbow joint excursions for target reaches in the virtual environment compared to the physical environment in all subjects. Thus, there was a decrease in the overall movement quality for movements made in the 2-D virtual environment. This suggests that 2-D video-capture virtual reality environments should be used with caution when the goal of the rehabilitation program is to improve the quality of movement patterns of the upper limb. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1534-4320 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:22907972 |
Approved |
no |
|
|
Call Number |
|
Serial |
28 |
|
Permanent link to this record |
|
|
|
|
Author |
Levin, M.F.; Banina, M.C.; Frenkel-Toledo, S.; Berman, S.; Soroker, N.; Solomon, J.M.; Liebermann, D.G. |
|
|
Title |
Personalized upper limb training combined with anodal-tDCS for sensorimotor recovery in spastic hemiparesis: study protocol for a randomized controlled trial |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Trials |
Abbreviated Journal |
Trials |
|
|
Volume |
19 |
Issue |
1 |
Pages |
7 |
|
|
Keywords |
Neurorehabilitation; Spasticity; Spatial threshold; Stroke; tDCS |
|
|
Abstract |
BACKGROUND: Recovery of voluntary movement is a main rehabilitation goal. Efforts to identify effective upper limb (UL) interventions after stroke have been unsatisfactory. This study includes personalized impairment-based UL reaching training in virtual reality (VR) combined with non-invasive brain stimulation to enhance motor learning. The approach is guided by limiting reaching training to the angular zone in which active control is preserved (“active control zone”) after identification of a “spasticity zone”. Anodal transcranial direct current stimulation (a-tDCS) is used to facilitate activation of the affected hemisphere and enhance inter-hemispheric balance. The purpose of the study is to investigate the effectiveness of personalized reaching training, with and without a-tDCS, to increase the range of active elbow control and improve UL function. METHODS: This single-blind randomized controlled trial will take place at four academic rehabilitation centers in Canada, India and Israel. The intervention involves 10 days of personalized VR reaching training with both groups receiving the same intensity of treatment. Participants with sub-acute stroke aged 25 to 80 years with elbow spasticity will be randomized to one of three groups: personalized training (reaching within individually determined active control zones) with a-tDCS (group 1) or sham-tDCS (group 2), or non-personalized training (reaching regardless of active control zones) with a-tDCS (group 3). A baseline assessment will be performed at randomization and two follow-up assessments will occur at the end of the intervention and at 1 month post intervention. Main outcomes are elbow-flexor spatial threshold and ratio of spasticity zone to full elbow-extension range. Secondary outcomes include the Modified Ashworth Scale, Fugl-Meyer Assessment, Streamlined Wolf Motor Function Test and UL kinematics during a standardized reach-to-grasp task. DISCUSSION: This study will provide evidence on the effectiveness of personalized treatment on spasticity and UL motor ability and feasibility of using low-cost interventions in low-to-middle-income countries. TRIAL REGISTRATION: ClinicalTrials.gov, ID: NCT02725853 . Initially registered on 12 January 2016. |
|
|
Address |
Department of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1745-6215 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29301545 |
Approved |
no |
|
|
Call Number |
|
Serial |
87 |
|
Permanent link to this record |
|
|
|
|
Author |
Frenkel-Toledo, S.; Yamanaka, J.; Friedman, J.; Feldman, A.G.; Levin, M.F. |
|
|
Title |
Referent control of anticipatory grip force during reaching in stroke: an experimental and modeling study |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Experimental Brain Research |
Abbreviated Journal |
Exp Brain Res |
|
|
Volume |
237 |
Issue |
7 |
Pages |
1655-1672 |
|
|
Keywords |
Anticipatory grip force; Referent control; Stroke |
|
|
Abstract |
To evaluate normal and impaired control of anticipatory grip force (GF) modulation, we compared GF production during horizontal arm movements in healthy and post-stroke subjects, and, based on a physiologically feasible dynamic model, determined referent control variables underlying the GF-arm motion coordination in each group. 63% of 13 healthy and 48% of 13 stroke subjects produced low sustained initial force (< 10 N) and increased GF prior to arm movement. Movement-related GF increases were higher during fast compared to self-paced arm extension movements only in the healthy group. Differences in the patterns of anticipatory GF increases before the arm movement onset between groups occurred during fast extension arm movement only. In the stroke group, longer delays between the onset of GF change and elbow motion were related to clinical upper limb deficits. Simulations showed that GFs could emerge from the difference between the actual and the referent hand aperture (Ra) specified by the CNS. Similarly, arm movement could result from changes in the referent elbow position (Re) and could be affected by the co-activation (C) command. A subgroup of stroke subjects, who increased GF before arm movement, could specify different patterns of the referent variables while reproducing the healthy typical pattern of GF-arm coordination. Stroke subjects, who increased GF after arm movement onset, also used different referent strategies than controls. Thus, altered anticipatory GF behavior in stroke subjects may be explained by deficits in referent control. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0014-4819 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:30976821 |
Approved |
no |
|
|
Call Number |
|
Serial |
98 |
|
Permanent link to this record |