toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print

Warning: Undefined array key "typeRandomized Controlled Trial" in /home/public/search.php on line 1322
  Records Links
Author Frenkel-Toledo, S.; Bentin, S.; Perry, A.; Liebermann, D.G.; Soroker, N. url  doi
openurl 
  Title Dynamics of the EEG Power in the Frequency and Spatial Domains During Observation and Execution of Manual Movements Type Journal Article
  Year 2013 Publication Brain Research Abbreviated Journal Brain Res  
  Volume 1509 Issue Pages 43-57  
  Keywords  
  Abstract (down) Mu suppression is the attenuation of EEG power in the alpha frequency range (8-12Hz) while executing or observing a motor action. Whereas typically observed at central scalp sites, there are diverging reports about the extent of the attenuation over the cortical mantle, its exact frequency range and the specificity of this phenomenon. We investigated the modulation of EEG oscillations in frequency-bands from 4 to 12Hz at frontal, central, parietal and occipital sites during the execution of manual movements and during observation of similar actions from allocentric (i.e., facing the actor) and egocentric (i.e., seeing the actor from behind) viewpoints. Suppression was determined relative to observation of a non-biological movement. Action observation elicited greater suppression in the lower (8-10Hz) compared to the higher mu range (10-12Hz), and greater suppression in the entire 4-12Hz range at frontal and central sites compared to parietal and occipital sites. In addition, suppression tended to be greater during observation of a motor action from allocentric compared to egocentric viewpoints. During execution of movement, suppression of the EEG occurred primarily in the higher alpha range and was absent at occipital sites. In the theta range (4-8Hz), the EEG amplitude was suppressed during action observation and execution. The results suggest a functional distinction between modulation of mu and alpha rhythms, and between the higher and lower ranges of the mu rhythms. The activity of the presumed human mirror neuron system seems primarily evident in the lower mu range and in the theta range.  
  Address Sackler Faculty of Medicine, Tel Aviv University, Israel; Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel. Electronic address: silvi197@bezeqint.net  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8993 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23500633 Approved no  
  Call Number Serial 68  
Permanent link to this record
 

 
Author Frenkel-Toledoa, S.; Bentin, S.; Perry, A.; Liebermann, D. G.; Soroker, N. doi  openurl
  Title Mirror-neuron system recruitment by action observation: Effects of focal brain damage on mu suppression Type Journal Article
  Year 2014 Publication NeuroImage Abbreviated Journal  
  Volume 87 Issue Pages 127-137  
  Keywords  
  Abstract (down) Mu suppression is the attenuation of EEG power in the alpha frequency range (8-12 Hz), recorded over the sensorimotor cortex during execution and observation of motor actions. Based on this dual characteristic it is thought to signalize activation of a human analogue of the mirror neuron system (MNS) found in macaque monkeys, though much uncertainty remains concerning its specificity and full significance. To further explore the hypothesized relationship between mu suppression and MNS activation, we investigated how it is affected by damage to cortical regions, including areas where the MNS is thought to reside. EEG was recorded in 33 first-event stroke patients during observation of video-clips showing reaching and grasping hand movements. We examined the modulation of EEG oscillations at central and occipital sites, and analyzed separately the lower (8-10 Hz) and higher (10-12 Hz) segments of the alpha/mu range. Suppression was determined relative to observation of a non-biological movement. Normalized lesion data were used to investigate how damage to regions of the fronto-parietal cortex affects the pattern of suppression. The magnitude of mu suppression during action observation was significantly reduced in the affected hemisphere compared to the unaffected hemisphere. Differences between the hemispheres were significant at central (sensorimotor) sites but not at occipital (visual) sites. Total hemispheric volume loss did not correlate with mu suppression. Suppression in the lower mu range in the unaffected hemisphere (C3) correlated with lesion extent within the right inferior parietal cortex. Our lesion study supports the role of mu suppression as a marker of MNS activation, as suggested by findings gathered in previous studies in normal subjects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 71  
Permanent link to this record
 

 
Author Liebermann, D.G.; Berman, S.; Weingarden H.; Levin, M.F.; Weiss, P.L. doi  openurl
  Title Kinematic features of arm and trunk movements in stroke patients and age-matched healthy controls during reaching in virtual and physical environments Type Conference Article
  Year 2009 Publication Virtual Rehabilitation International Conference Abbreviated Journal  
  Volume Issue Pages 179-184  
  Keywords  
  Abstract (down) Motor performance of stroke patients and healthy individuals was compared in terms of selected kinematic features of arm and trunk movements while subjects reached for visual targets in virtual (VR) and physical (PH) environments. In PH, the targets were placed at an extended arm distance, while in VR comparably placed virtual targets were presented via GestureTek's IREX system. Our goal was to obtain further insights into research methods related to VR-based rehabilitation. Eight right-hemiparetic stroke patients (age =46-87 years) and 8 healthy adults (age =51-73 years) completed 84 reaching movements in VR and PH environments while seated. The results showed that arm and trunk movements differed in the two environments in patients and to a lesser extent in healthy individuals. Arm motion of patients became jerkier in VR, with larger paths and longer movement durations, and presented greater arm torsion (i.e., larger elbow rotations around the hand-shoulder axis). Interestingly, patients also showed a significant reduction of compensatory trunk movements during VR reaching. The findings indicate that when targets were perceived to be beyond hand reach, stroke patients may be less able to estimate 3D virtual target locations obtained from the 2D TV planar displays. This was not the case for healthy participants.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 52  
Permanent link to this record
 

 
Author Hoffman, J.R.; Liebermann, D.; Gusis, A. url  openurl
  Title Relationship of leg strength and power to ground reaction forces in both experienced and novice jump trained personnel Type Journal Article
  Year 1997 Publication Aviation, Space, and Environmental Medicine Abbreviated Journal Aviat Space Environ Med  
  Volume 68 Issue 8 Pages 710-714  
  Keywords *Aerospace Medicine; *Aviation; Biomechanics; Humans; Leg/*physiology; Male; Military Personnel/*education; *Physical Education and Training; Physical Fitness/*physiology; Range of Motion, Articular; Wounds and Injuries/etiology/*prevention & control  
  Abstract (down) METHODS: There were 14 male soldiers who participated in this study examining the relationship of leg strength and power on landing performance. Subjects were separated into two groups. The first group (E, n = 7) were parachute training instructors and highly experienced in parachute jumping. The second group of subjects (N, n = 7) had no prior parachute training experience and were considered novice jumpers. All subjects were tested for one-repetition maximum (1 RM) squat strength and maximal jump power. Ground reaction forces (GRF) and the time to peak force (TPF) at landing were measured from jumps at four different heights (95 cm, 120 cm, 145 cm, and 170 cm). All jumps were performed from a customized jump platform onto a force plate. RESULTS: No differences were seen between E and N in either IRM squat strength or in MJP. In addition, no differences were seen between the groups for time to peak force at any jump height. However, significantly greater GRF were observed in E compared to N. Moderate to high correlations between maximal jump power and GRF (r values ranging from 0.62-0.93) were observed in E. Although maximal jump power and the TPF was significantly correlated (r = -0.89) at only 120 cm for E, it was interesting to note that the correlations between MJP and the time to peak force in E were all negative and that the correlations between these variables in N were all positive. CONCLUSIONS: These results suggest that experienced parachutists may use a different landing strategy than novice jumpers. This difference may be reflected by differences in GRF generated during impact and a more efficient utilization of muscle power during the impact phase of the landing.  
  Address Aeromedical Center, Physiological Training Unit, Israel Air Force, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0095-6562 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9262813 Approved no  
  Call Number Serial 60  
Permanent link to this record
 

 
Author Issurin, V.B.; Liebermann, D.G.; Tenenbaum, G. url  doi
openurl 
  Title Effect of vibratory stimulation training on maximal force and flexibility Type
  Year 1994 Publication Journal of Sports Sciences Abbreviated Journal J Sports Sci  
  Volume 12 Issue 6 Pages 561-566  
  Keywords Adult; Humans; Male; Muscle Contraction/physiology; Muscle, Skeletal/*physiology; *Physical Education and Training; Vibration/*therapeutic use  
  Abstract (down) In this study, we investigated a new method of training for maximal strength and flexibility, which included exertion with superimposed vibration (vibratory stimulation, VS) on target muscles. Twenty-eight male athletes were divided into three groups, and trained three times a week for 3 weeks in one of the following conditions: (A) conventional exercises for strength of the arms and VS stretching exercises for the legs; (B) VS strength exercises for the arms and conventional stretching exercises for the legs; (C) irrelevant training (control group). The vibration was applied at 44 Hz while its amplitude was 3 mm. The effect of training was evaluated by means of isotonic maximal force, heel-to-heel length in the two-leg split across, and flex-and-reach test for body flexion. The VS strength training yielded an average increase in isotonic maximal strength of 49.8%, compared with an average gain of 16% with conventional training, while no gain was observed for the control group. The VS flexibility training resulted in an average gain in the legs split of 14.5 cm compared with 4.1 cm for the conventional training and 2 cm for the control groups, respectively. The ANOVA revealed significant pre-post training effects and an interaction between pre-post training and 'treatment' effects (P < 0.001) for the isotonic maximal force and both flexibility tests. It was concluded that superimposed vibrations applied for short periods allow for increased gains in maximal strength and flexibility.  
  Address Ribstein Centre for Research and Sport Medicine Sciences, Wingate Institute, Wingate Post, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-0414 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:7853452 Approved no  
  Call Number Serial 56  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: