toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Liebermann, D.G.; Berman, S.; Weiss, P.L.T.; Levin, M.F. url  doi
openurl 
  Title Kinematics of reaching movements in a 2-d virtual environment in adults with and without stroke Type Journal Article
  Year 2012 Publication IEEE Transactions on Neural Systems and Rehabilitation Engineering : a Publication of the IEEE Engineering in Medicine and Biology Society Abbreviated Journal IEEE Trans Neural Syst Rehabil Eng  
  Volume 20 Issue 6 Pages 778-787  
  Keywords  
  Abstract Virtual reality environments are increasingly being used for upper limb rehabilitation in poststroke patients. Our goal was to determine if arm reaching movements made in a 2-D video-capture virtual reality environment are similar to those made in a comparable physical environment. We compared arm and trunk kinematics for reaches made with the right, dominant arm to three targets (14 trials per target) in both environments by 16 adults with right poststroke hemiparesis and by eight healthy age-matched controls. Movement kinematics were recorded with a three-camera optoelectronic system at 100 samples/s. Reaching movements made by both control and stroke subjects were affected by viewing the targets in the video-capture 2-D virtual environment. Movements were slower, shorter, less straight, less accurate and involved smaller ranges of shoulder and elbow joint excursions for target reaches in the virtual environment compared to the physical environment in all subjects. Thus, there was a decrease in the overall movement quality for movements made in the 2-D virtual environment. This suggests that 2-D video-capture virtual reality environments should be used with caution when the goal of the rehabilitation program is to improve the quality of movement patterns of the upper limb.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1534-4320 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:22907972 Approved no  
  Call Number Serial 28  
Permanent link to this record
 

 
Author Frenkel-Toledo, S.; Bentin, S.; Perry, A.; Liebermann, D.G.; Soroker, N. url  doi
openurl 
  Title Dynamics of the EEG Power in the Frequency and Spatial Domains During Observation and Execution of Manual Movements Type Journal Article
  Year 2013 Publication Brain Research Abbreviated Journal Brain Res  
  Volume 1509 Issue Pages 43-57  
  Keywords  
  Abstract Mu suppression is the attenuation of EEG power in the alpha frequency range (8-12Hz) while executing or observing a motor action. Whereas typically observed at central scalp sites, there are diverging reports about the extent of the attenuation over the cortical mantle, its exact frequency range and the specificity of this phenomenon. We investigated the modulation of EEG oscillations in frequency-bands from 4 to 12Hz at frontal, central, parietal and occipital sites during the execution of manual movements and during observation of similar actions from allocentric (i.e., facing the actor) and egocentric (i.e., seeing the actor from behind) viewpoints. Suppression was determined relative to observation of a non-biological movement. Action observation elicited greater suppression in the lower (8-10Hz) compared to the higher mu range (10-12Hz), and greater suppression in the entire 4-12Hz range at frontal and central sites compared to parietal and occipital sites. In addition, suppression tended to be greater during observation of a motor action from allocentric compared to egocentric viewpoints. During execution of movement, suppression of the EEG occurred primarily in the higher alpha range and was absent at occipital sites. In the theta range (4-8Hz), the EEG amplitude was suppressed during action observation and execution. The results suggest a functional distinction between modulation of mu and alpha rhythms, and between the higher and lower ranges of the mu rhythms. The activity of the presumed human mirror neuron system seems primarily evident in the lower mu range and in the theta range.  
  Address Sackler Faculty of Medicine, Tel Aviv University, Israel; Department of Neurological Rehabilitation, Loewenstein Hospital, Raanana, Israel. Electronic address: silvi197@bezeqint.net  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8993 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:23500633 Approved no  
  Call Number Serial 68  
Permanent link to this record
 

 
Author Merdler, T.; Liebermann, D.G.; Levin, M.F.; Berman, S. url  doi
openurl 
  Title Arm-plane representation of shoulder compensation during pointing movements in patients with stroke Type Journal Article
  Year 2013 Publication Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology Abbreviated Journal J Electromyogr Kinesiol  
  Volume 23 Issue 4 Pages 938947  
  Keywords Kinematics; Arm movement; Rehabilitation  
  Abstract Improvements in functional motor activities are often accompanied by motor compensations to overcome persistent motor impairment in the upper limb. Kinematic analysis is used to objectively quantify movement patterns including common motor compensations such as excessive trunk displacement during reaching. However, a common motor compensation to assist reaching, shoulder abduction, is not adequately characterized by current motion analysis approaches. We apply the arm-plane representation that accounts for the co-variation between movements of the whole arm, and investigate its ability to identify and quantify compensatory arm movements in stroke subjects when making forward arm reaches. This method has not been previously applied to the analysis of motion deficits. Sixteen adults with right post-stroke hemiparesis and eight healthy age-matched controls reached in three target directions (14 trials/target; sampling rate: 100Hz). Arm-plane movement was validated against endpoint, joint, and trunk kinematics and compared between groups. In stroke subjects, arm-plane measures were correlated with arm impairment (Fugl-Meyer Assessment) and ability (Box and Blocks) scores and were more sensitive than clinical measures to detect mild motor impairment. Arm-plane motion analysis provides new information about motor compensations involving the co-variation of shoulder and elbow movements that may help to understand the underlying motor deficits in patients with stroke.  
  Address Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-6411 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:23566477 Approved no  
  Call Number Serial 69  
Permanent link to this record
 

 
Author Berman, S.; Liebermann, D.G.; McIntyre, J. url  doi
openurl 
  Title Constrained Motion Control on a Hemispherical Surface – Path Planning Type Journal Article
  Year 2014 Publication Journal of Neurophysiology Abbreviated Journal J Neurophysiol  
  Volume 111 Issue 5 Pages 954-968  
  Keywords Constrained motion; geodesics; path planning  
  Abstract Surface-constrained motion, i.e., motion constraint by a rigid surface, is commonly found in daily activities. The current work investigates the choice of hand paths constrained to a concave hemispherical surface. To gain insight regarding the paths and their relationship with task dynamics, we simulated various control policies. The simulations demonstrated that following a geodesic path is advantageous not only in terms of path length, but also in terms of motor planning and sensitivity to motor command errors. These stem from the fact that the applied forces lie in a single plane (that of the geodesic path itself). To test whether human subjects indeed follow the geodesic, and to see how such motion compares to other paths, we recorded movements in a virtual haptic-visual environment from eleven healthy subjects. The task was comprised of point-to-point motion between targets at two elevations (30 degrees and 60 degrees ). Three typical choices of paths were observed from a frontal plane projection of the paths: circular arcs, straight lines, and arcs close to the geodesic path for each elevation. Based on the measured hand paths, we applied k-means blind separation to divide the subjects into three groups and compared performance indicators. The analysis confirmed that subjects who followed paths closest to the geodesic produced faster and smoother movements, compared to the others. The 'better' performance reflects the dynamical advantages of following the geodesic path, as shown by the simulations, and may also reflect invariant features of the control policies used to produce such a surface-constrained motion.  
  Address Ben-Gurion University of the Negev  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3077 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:24259548 Approved no  
  Call Number Serial 72  
Permanent link to this record
 

 
Author Levin, M.F.; Liebermann, D.G.; Parmet, Y.; Berman, S. url  doi
openurl 
  Title Compensatory Versus Noncompensatory Shoulder Movements Used for Reaching in Stroke Type Journal Article
  Year 2015 Publication Neurorehabilitation and Neural Repair Abbreviated Journal Neurorehabil Neural Repair  
  Volume Issue Pages  
  Keywords adaptation; arm movement; compensation; kinematics; recovery; rehabilitation  
  Abstract BACKGROUND: The extent to which the upper-limb flexor synergy constrains or compensates for arm motor impairment during reaching is controversial. This synergy can be quantified with a minimal marker set describing movements of the arm-plane. OBJECTIVES: To determine whether and how (a) upper-limb flexor synergy in patients with chronic stroke contributes to reaching movements to different arm workspace locations and (b) reaching deficits can be characterized by arm-plane motion. METHODS: Sixteen post-stroke and 8 healthy control subjects made unrestrained reaching movements to targets located in ipsilateral, central, and contralateral arm workspaces. Arm-plane, arm, and trunk motion, and their temporal and spatial linkages were analyzed. RESULTS: Individuals with moderate/severe stroke used greater arm-plane movement and compensatory trunk movement compared to those with mild stroke and control subjects. Arm-plane and trunk movements were more temporally coupled in stroke compared with controls. Reaching accuracy was related to different segment and joint combinations for each target and group: arm-plane movement in controls and mild stroke subjects, and trunk and elbow movements in moderate/severe stroke subjects. Arm-plane movement increased with time since stroke and when combined with trunk rotation, discriminated between different subject groups for reaching the central and contralateral targets. Trunk movement and arm-plane angle during target reaches predicted the subject group. CONCLUSIONS: The upper-limb flexor synergy was used adaptively for reaching accuracy by patients with mild, but not moderate/severe stroke. The flexor synergy, as parameterized by the amount of arm-plane motion, can be used by clinicians to identify levels of motor recovery in patients with stroke.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1545-9683 ISBN Medium  
  Area Expedition Conference  
  Notes (up) PMID:26510934 Approved no  
  Call Number Serial 79  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: