toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Markstrom, J.L.; Liebermann, D.G.; Schelin, L.; Hager, C.K. url  doi
openurl 
  Title Atypical Lower Limb Mechanics During Weight Acceptance of Stair Descent at Different Time Frames After Anterior Cruciate Ligament Reconstruction Type Journal Article
  Year 2022 Publication The American Journal of Sports Medicine Abbreviated Journal Am J Sports Med  
  Volume Issue Pages 1-9  
  Keywords Acl; biomechanics; functional data analysis; motion analysis; stepping down  
  Abstract BACKGROUND: An anterior cruciate ligament (ACL) rupture may result in poor sensorimotor knee control and, consequentially, adapted movement strategies to help maintain knee stability. Whether patients display atypical lower limb mechanics during weight acceptance of stair descent at different time frames after ACL reconstruction (ACLR) is unknown. PURPOSE: To compare the presence of atypical lower limb mechanics during the weight acceptance phase of stair descent among athletes at early, middle, and late time frames after unilateral ACLR. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 49 athletes with ACLR were classified into 3 groups according to time after ACLR-early (<6 months; n = 17), middle (6-18 months; n = 16), and late (>18 months; n = 16)-and compared with asymptomatic athletes (control; n = 18). Sagittal plane hip, knee, and ankle angles; angular velocities; moments; and powers were compared between the ACLR groups' injured and noninjured legs and the control group as well as between legs within groups using functional data analysis methods. RESULTS: All 3 ACLR groups showed greater knee flexion angles and moments than the control group for injured and noninjured legs. For the other outcomes, the early group had, compared with the control group, less hip power absorption, more knee power absorption, lower ankle plantarflexion angle, lower ankle dorsiflexion moment, and less ankle power absorption for the injured leg and more knee power absorption and higher vertical ground reaction force for the noninjured leg. In addition, the late group showed differences from the control group for the injured leg revealing more knee power absorption and lower ankle plantarflexion angle. Only the early group took a longer time than the control group to complete weight acceptance and demonstrated asymmetry for multiple outcomes. CONCLUSION: Athletes with different time frames after ACLR revealed atypically large knee angles and moments during weight acceptance of stair descent for both the injured and the noninjured legs. These findings may express a chronically adapted strategy to increase knee control. In contrast, atypical hip and ankle mechanics seem restricted to an early time frame after ACLR. CLINICAL RELEVANCE: Rehabilitation after ACLR should include early training in controlling weight acceptance. Including a control group is essential when evaluating movement patterns after ACLR because both legs may be affected.  
  Address Department of Community Medicine and Rehabilitation, Physiotherapy, Umea University, Umea, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0363-5465 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:35604127 Approved no  
  Call Number Serial 112  
Permanent link to this record
 

 
Author Levin, M.F.; Berman, S.; Weiss, N.; Parmet, Y.; Banina, M.C.; Frenkel-Toledo, S.; Soroker, N.; Solomon, J.M.; Liebermann, D.G. url  doi
openurl 
  Title ENHANCE proof-of-concept three-arm randomized trial: effects of reaching training of the hemiparetic upper limb restricted to the spasticity-free elbow range Type
  Year 2023 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 13 Issue 1 Pages 22934  
  Keywords Humans; Elbow; *Transcranial Direct Current Stimulation; Muscle Spasticity/therapy/complications; Upper Extremity; *Elbow Joint; *Stroke/complications; *Stroke Rehabilitation/methods  
  Abstract Post-stroke motor recovery processes remain unknown. Timescales and patterns of upper-limb (UL) recovery suggest a major impact of biological factors, with modest contributions from rehabilitation. We assessed a novel impairment-based training motivated by motor control theory where reaching occurs within the spasticity-free elbow range. Patients with subacute stroke (</= 6 month; n = 46) and elbow flexor spasticity were randomly allocated to a 10-day UL training protocol, either personalized by restricting reaching to the spasticity-free elbow range defined by the tonic stretch reflex threshold (TSRT) or non-personalized (non-restricted) and with/without anodal transcranial direct current stimulation. Outcomes assessed before, after, and 1 month post-intervention were elbow flexor TSRT angle and reach-to-grasp arm kinematics (primary) and stretch reflex velocity sensitivity, clinical impairment, and activity (secondary). Results were analyzed for 3 groups as well as those of the effects of impairment-based training. Clinical measures improved in both groups. Spasticity-free range training resulted in faster and smoother reaches, smaller (i.e., better) arm-plane path length, and closer-to-normal shoulder/elbow movement patterns. Non-personalized training improved clinical scores without improving arm kinematics, suggesting that clinical measures do not account for movement quality. Impairment-based training within a spasticity-free elbow range is promising since it may improve clinical scores together with arm movement quality.Clinical Trial Registration: URL: http://www.clinicaltrials.gov . Unique Identifier: NCT02725853; Initial registration date: 01/04/2016.  
  Address Department of Physical Therapy, Faculty of Medicine, Stanley Steyer School of Health Professions, Tel Aviv University, POB 39040, 61390, Ramat Aviv, Tel Aviv, Israel. dlieberm@tauex.tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:38129527; PMCID:PMC10739929 Approved no  
  Call Number Serial 121  
Permanent link to this record
 

 
Author Lowenthal-Raz, J.; Liebermann, D.G.; Friedman, J.; Soroker, N. url  doi
openurl 
  Title Kinematic descriptors of arm reaching movement are sensitive to hemisphere-specific immediate neuromodulatory effects of transcranial direct current stimulation post stroke Type Journal Article
  Year 2024 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 14 Issue 1 Pages 11971  
  Keywords Humans; *Transcranial Direct Current Stimulation/methods; Male; Female; Middle Aged; *Stroke/physiopathology/therapy; Biomechanical Phenomena; Aged; *Arm/physiopathology; *Movement/physiology; *Stroke Rehabilitation/methods; Single-Blind Method; Cross-Over Studies  
  Abstract Transcranial direct current stimulation (tDCS) exerts beneficial effects on motor recovery after stroke, presumably by enhancement of adaptive neural plasticity. However, patients with extensive damage may experience null or deleterious effects with the predominant application mode of anodal (excitatory) stimulation of the damaged hemisphere. In such cases, excitatory stimulation of the non-damaged hemisphere might be considered. Here we asked whether tDCS exerts a measurable effect on movement quality of the hemiparetic upper limb, following just a single treatment session. Such effect may inform on the hemisphere that should be excited. Using a single-blinded crossover experimental design, stroke patients and healthy control subjects were assessed before and after anodal, cathodal and sham tDCS, each provided during a single session of reaching training (repeated point-to-point hand movement on an electronic tablet). Group comparisons of endpoint kinematics at baseline-number of peaks in the speed profile (NoP; smoothness), hand-path deviations from the straight line (SLD; accuracy) and movement time (MT; speed)-disclosed greater NoP, larger SLD and longer MT in the stroke group. NoP and MT revealed an advantage for anodal compared to sham stimulation of the lesioned hemisphere. NoP and MT improvements under anodal stimulation of the non-lesioned hemisphere correlated positively with the severity of hemiparesis. Damage to specific cortical regions and white-matter tracts was associated with lower kinematic gains from tDCS. The study shows that simple descriptors of movement kinematics of the hemiparetic upper limb are sensitive enough to demonstrate gain from neuromodulation by tDCS, following just a single session of reaching training. Moreover, the results show that tDCS-related gain is affected by the severity of baseline motor impairment, and by lesion topography.  
  Address Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel. nachum@soroker.online  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:38796610; PMCID:PMC11127956 Approved no  
  Call Number Serial 125  
Permanent link to this record
 

 
Author Grinberg, A.; Strong, A.; Strandberg, J.; Selling, J.; Liebermann, D.G.; Bjorklund, M.; Hager, C.K. url  doi
openurl 
  Title Electrocortical activity associated with movement-related fear: a methodological exploration of a threat-conditioning paradigm involving destabilising perturbations during quiet standing Type Journal Article
  Year 2024 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res  
  Volume Issue Pages  
  Keywords Cnv; Eeg; Erp; Kinesiophobia; Moving platform; Re-injury anxiety  
  Abstract Musculoskeletal trauma often leads to lasting psychological impacts stemming from concerns of future injuries. Often referred to as kinesiophobia or re-injury anxiety, such concerns have been shown to hinder return to physical activity and are believed to increase the risk for secondary injuries. Screening for re-injury anxiety is currently restricted to subjective questionnaires, which are prone to self-report bias. We introduce a novel approach to objectively identify electrocortical activity associated with the threat of destabilising perturbations. We aimed to explore its feasibility among non-injured persons, with potential future implementation for screening of re-injury anxiety. Twenty-three participants stood blindfolded on a translational balance perturbation platform. Consecutive auditory stimuli were provided as low (neutral stimulus [CS(-)]) or high (conditioned stimulus [CS(+)]) tones. For the main experimental protocol (Protocol I), half of the high tones were followed by a perturbation in one of eight unpredictable directions. A separate validation protocol (Protocol II) requiring voluntary squatting without perturbations was performed with 12 participants. Event-related potentials (ERP) were computed from electroencephalography recordings and significant time-domain components were detected using an interval-wise testing procedure. High-amplitude early contingent negative variation (CNV) waves were significantly greater for CS(+) compared with CS(-) trials in all channels for Protocol I (> 521-800ms), most prominently over frontal and central midline locations (P </= 0.001). For Protocol II, shorter frontal ERP components were observed (541-609ms). Our test paradigm revealed electrocortical activation possibly associated with movement-related fear. Exploring the discriminative validity of the paradigm among individuals with and without self-reported re-injury anxiety is warranted.  
  Address Department of Community Medicine and Rehabilitation, Umea University, Umea, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-4819 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:38896295 Approved no  
  Call Number Serial 122  
Permanent link to this record
 

 
Author Issurin, V.B.; Liebermann, D.G.; Tenenbaum, G. url  doi
openurl 
  Title Effect of vibratory stimulation training on maximal force and flexibility Type
  Year 1994 Publication Journal of Sports Sciences Abbreviated Journal J Sports Sci  
  Volume 12 Issue 6 Pages 561-566  
  Keywords Adult; Humans; Male; Muscle Contraction/physiology; Muscle, Skeletal/*physiology; *Physical Education and Training; Vibration/*therapeutic use  
  Abstract In this study, we investigated a new method of training for maximal strength and flexibility, which included exertion with superimposed vibration (vibratory stimulation, VS) on target muscles. Twenty-eight male athletes were divided into three groups, and trained three times a week for 3 weeks in one of the following conditions: (A) conventional exercises for strength of the arms and VS stretching exercises for the legs; (B) VS strength exercises for the arms and conventional stretching exercises for the legs; (C) irrelevant training (control group). The vibration was applied at 44 Hz while its amplitude was 3 mm. The effect of training was evaluated by means of isotonic maximal force, heel-to-heel length in the two-leg split across, and flex-and-reach test for body flexion. The VS strength training yielded an average increase in isotonic maximal strength of 49.8%, compared with an average gain of 16% with conventional training, while no gain was observed for the control group. The VS flexibility training resulted in an average gain in the legs split of 14.5 cm compared with 4.1 cm for the conventional training and 2 cm for the control groups, respectively. The ANOVA revealed significant pre-post training effects and an interaction between pre-post training and 'treatment' effects (P < 0.001) for the isotonic maximal force and both flexibility tests. It was concluded that superimposed vibrations applied for short periods allow for increased gains in maximal strength and flexibility.  
  Address Ribstein Centre for Research and Sport Medicine Sciences, Wingate Institute, Wingate Post, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-0414 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:7853452 Approved no  
  Call Number Serial 56  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: