toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links (up)
Author Markstrom, J.L.; Liebermann, D.G.; Schelin, L.; Hager, C.K. url  doi
openurl 
  Title Atypical Lower Limb Mechanics During Weight Acceptance of Stair Descent at Different Time Frames After Anterior Cruciate Ligament Reconstruction Type Journal Article
  Year 2022 Publication The American Journal of Sports Medicine Abbreviated Journal Am J Sports Med  
  Volume Issue Pages 1-9  
  Keywords Acl; biomechanics; functional data analysis; motion analysis; stepping down  
  Abstract BACKGROUND: An anterior cruciate ligament (ACL) rupture may result in poor sensorimotor knee control and, consequentially, adapted movement strategies to help maintain knee stability. Whether patients display atypical lower limb mechanics during weight acceptance of stair descent at different time frames after ACL reconstruction (ACLR) is unknown. PURPOSE: To compare the presence of atypical lower limb mechanics during the weight acceptance phase of stair descent among athletes at early, middle, and late time frames after unilateral ACLR. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 49 athletes with ACLR were classified into 3 groups according to time after ACLR-early (<6 months; n = 17), middle (6-18 months; n = 16), and late (>18 months; n = 16)-and compared with asymptomatic athletes (control; n = 18). Sagittal plane hip, knee, and ankle angles; angular velocities; moments; and powers were compared between the ACLR groups' injured and noninjured legs and the control group as well as between legs within groups using functional data analysis methods. RESULTS: All 3 ACLR groups showed greater knee flexion angles and moments than the control group for injured and noninjured legs. For the other outcomes, the early group had, compared with the control group, less hip power absorption, more knee power absorption, lower ankle plantarflexion angle, lower ankle dorsiflexion moment, and less ankle power absorption for the injured leg and more knee power absorption and higher vertical ground reaction force for the noninjured leg. In addition, the late group showed differences from the control group for the injured leg revealing more knee power absorption and lower ankle plantarflexion angle. Only the early group took a longer time than the control group to complete weight acceptance and demonstrated asymmetry for multiple outcomes. CONCLUSION: Athletes with different time frames after ACLR revealed atypically large knee angles and moments during weight acceptance of stair descent for both the injured and the noninjured legs. These findings may express a chronically adapted strategy to increase knee control. In contrast, atypical hip and ankle mechanics seem restricted to an early time frame after ACLR. CLINICAL RELEVANCE: Rehabilitation after ACLR should include early training in controlling weight acceptance. Including a control group is essential when evaluating movement patterns after ACLR because both legs may be affected.  
  Address Department of Community Medicine and Rehabilitation, Physiotherapy, Umea University, Umea, Sweden  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0363-5465 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:35604127 Approved no  
  Call Number Serial 112  
Permanent link to this record
 

 
Author Levin, M.F.; Berman, S.; Weiss, N.; Parmet, Y.; Banina, M.C.; Frenkel-Toledo, S.; Soroker, N.; Solomon, J.M.; Liebermann, D.G. url  doi
openurl 
  Title ENHANCE proof-of-concept three-arm randomized trial: effects of reaching training of the hemiparetic upper limb restricted to the spasticity-free elbow range Type
  Year 2023 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 13 Issue 1 Pages 22934  
  Keywords Humans; Elbow; *Transcranial Direct Current Stimulation; Muscle Spasticity/therapy/complications; Upper Extremity; *Elbow Joint; *Stroke/complications; *Stroke Rehabilitation/methods  
  Abstract Post-stroke motor recovery processes remain unknown. Timescales and patterns of upper-limb (UL) recovery suggest a major impact of biological factors, with modest contributions from rehabilitation. We assessed a novel impairment-based training motivated by motor control theory where reaching occurs within the spasticity-free elbow range. Patients with subacute stroke (</= 6 month; n = 46) and elbow flexor spasticity were randomly allocated to a 10-day UL training protocol, either personalized by restricting reaching to the spasticity-free elbow range defined by the tonic stretch reflex threshold (TSRT) or non-personalized (non-restricted) and with/without anodal transcranial direct current stimulation. Outcomes assessed before, after, and 1 month post-intervention were elbow flexor TSRT angle and reach-to-grasp arm kinematics (primary) and stretch reflex velocity sensitivity, clinical impairment, and activity (secondary). Results were analyzed for 3 groups as well as those of the effects of impairment-based training. Clinical measures improved in both groups. Spasticity-free range training resulted in faster and smoother reaches, smaller (i.e., better) arm-plane path length, and closer-to-normal shoulder/elbow movement patterns. Non-personalized training improved clinical scores without improving arm kinematics, suggesting that clinical measures do not account for movement quality. Impairment-based training within a spasticity-free elbow range is promising since it may improve clinical scores together with arm movement quality.Clinical Trial Registration: URL: http://www.clinicaltrials.gov . Unique Identifier: NCT02725853; Initial registration date: 01/04/2016.  
  Address Department of Physical Therapy, Faculty of Medicine, Stanley Steyer School of Health Professions, Tel Aviv University, POB 39040, 61390, Ramat Aviv, Tel Aviv, Israel. dlieberm@tauex.tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:38129527; PMCID:PMC10739929 Approved no  
  Call Number Serial 121  
Permanent link to this record
 

 
Author Issurin, V.B.; Liebermann, D.G.; Tenenbaum, G. url  doi
openurl 
  Title Effect of vibratory stimulation training on maximal force and flexibility Type
  Year 1994 Publication Journal of Sports Sciences Abbreviated Journal J Sports Sci  
  Volume 12 Issue 6 Pages 561-566  
  Keywords Adult; Humans; Male; Muscle Contraction/physiology; Muscle, Skeletal/*physiology; *Physical Education and Training; Vibration/*therapeutic use  
  Abstract In this study, we investigated a new method of training for maximal strength and flexibility, which included exertion with superimposed vibration (vibratory stimulation, VS) on target muscles. Twenty-eight male athletes were divided into three groups, and trained three times a week for 3 weeks in one of the following conditions: (A) conventional exercises for strength of the arms and VS stretching exercises for the legs; (B) VS strength exercises for the arms and conventional stretching exercises for the legs; (C) irrelevant training (control group). The vibration was applied at 44 Hz while its amplitude was 3 mm. The effect of training was evaluated by means of isotonic maximal force, heel-to-heel length in the two-leg split across, and flex-and-reach test for body flexion. The VS strength training yielded an average increase in isotonic maximal strength of 49.8%, compared with an average gain of 16% with conventional training, while no gain was observed for the control group. The VS flexibility training resulted in an average gain in the legs split of 14.5 cm compared with 4.1 cm for the conventional training and 2 cm for the control groups, respectively. The ANOVA revealed significant pre-post training effects and an interaction between pre-post training and 'treatment' effects (P < 0.001) for the isotonic maximal force and both flexibility tests. It was concluded that superimposed vibrations applied for short periods allow for increased gains in maximal strength and flexibility.  
  Address Ribstein Centre for Research and Sport Medicine Sciences, Wingate Institute, Wingate Post, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-0414 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:7853452 Approved no  
  Call Number Serial 56  
Permanent link to this record
 

 
Author Falk, B.; Eliakim, A.; Dotan, R.; Liebermann, D.G.; Regev, R.; Bar-Or, O. url  openurl
  Title Birth weight and physical ability in 5- to 8-yr-old healthy children born prematurely Type Journal Article
  Year 1997 Publication Medicine and Science in Sports and Exercise Abbreviated Journal Med Sci Sports Exerc  
  Volume 29 Issue 9 Pages 1124-1130  
  Keywords *Birth Weight; Child; Child Development/physiology; Child, Preschool; Female; Follow-Up Studies; Humans; Infant, Newborn; *Infant, Premature; Male; *Motor Skills; *Physical Fitness  
  Abstract Recent advances in perinatal care have resulted in increased survival rates of extremely small and immature newborns. This has resulted in some neurodevelopmental impairment. The purpose of this study was to quantitatively evaluate and compare neuromuscular performance in children born prematurely at various levels of subnormal birth weight (BW). Subjects were 5- to 8-yr-old children born prematurely at different levels of subnormal BW (535-1760 g, N = 22, PM), and age-matched controls born at full term (> 2500 g, N = 15, CON). None of the subjects had any clinically defined neuromuscular disabilities. Body mass (BM) of PM was lower than that of CON (18.3 +/- 2.7 vs 21.7 +/- 3.8 kg) with no difference in height or sum of 4 skinfolds. Peak mechanical power output determined with a 15-s modified Wingate Anaerobic Test and corrected for BM was lower (P = 0.07) in PM than in CON (5.11 +/- 1.07 vs 5.94 +/- 1.00 W.kg-1). This was especially noticeable in children born at extremely low BW (ELBW, < 1000 g, 4.49 +/- 1.04 W.kg-1, P < 0.01). Peak power, determined in a force-plate vertical jump, corrected for BM was lower in PM vs CON (25.5 +/- 5.4 vs 30.8 +/- 5.2 W.kg-1, respectively P = 0.01), especially in the ELBW group (20.0 +/- 5.5 W.kg-1). Similarly, the elapsed time between peak velocity and actual jump take-off was longer in PM than in CON (41.2 +/- 9.4 vs 35.8 +/- 5.8 ms, respectively, P = 0.04). No differences were observed in peak force. The results suggest that performance deficiencies of prematurely-born children may be a result of inferior inter-muscular coordination. The precise neuromotor factors responsible for this should be identified by future research.  
  Address Ribstein Center for Research and Sport Medicine Sciences, Wingate Institute, Netanya, Israel. bfalk@ccsg.tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0195-9131 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9309621 Approved no  
  Call Number Serial 64  
Permanent link to this record
 

 
Author Merdler, T.; Liebermann, D.G.; Levin, M.F.; Berman, S. url  doi
openurl 
  Title Arm-plane representation of shoulder compensation during pointing movements in patients with stroke Type Journal Article
  Year 2013 Publication Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology Abbreviated Journal J Electromyogr Kinesiol  
  Volume 23 Issue 4 Pages 938–947  
  Keywords Kinematics; Arm movement; Rehabilitation  
  Abstract Improvements in functional motor activities are often accompanied by motor compensations to overcome persistent motor impairment in the upper limb. Kinematic analysis is used to objectively quantify movement patterns including common motor compensations such as excessive trunk displacement during reaching. However, a common motor compensation to assist reaching, shoulder abduction, is not adequately characterized by current motion analysis approaches. We apply the arm-plane representation that accounts for the co-variation between movements of the whole arm, and investigate its ability to identify and quantify compensatory arm movements in stroke subjects when making forward arm reaches. This method has not been previously applied to the analysis of motion deficits. Sixteen adults with right post-stroke hemiparesis and eight healthy age-matched controls reached in three target directions (14 trials/target; sampling rate: 100Hz). Arm-plane movement was validated against endpoint, joint, and trunk kinematics and compared between groups. In stroke subjects, arm-plane measures were correlated with arm impairment (Fugl-Meyer Assessment) and ability (Box and Blocks) scores and were more sensitive than clinical measures to detect mild motor impairment. Arm-plane motion analysis provides new information about motor compensations involving the co-variation of shoulder and elbow movements that may help to understand the underlying motor deficits in patients with stroke.  
  Address Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-6411 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23566477 Approved no  
  Call Number Serial 69  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: