toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Melzer, I.; Liebermann, D.G.; Krasovsky, T.; Oddsson, L.I.E. url  doi
openurl 
  Title Cognitive load affects lower limb force-time relations during voluntary rapid stepping in healthy old and young adults Type Journal Article
  Year 2010 Publication The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences Abbreviated Journal J Gerontol A Biol Sci Med Sci  
  Volume (down) 65 Issue 4 Pages 400-406  
  Keywords *Accidental Falls; Adult; Aged; Aged, 80 and over; Aging/*physiology; Attention/physiology; Cognition/*physiology; Gait/*physiology; Humans; Postural Balance/*physiology; Reaction Time  
  Abstract BACKGROUND: Quick step execution may prevent falls when balance is lost; adding a concurrent task delays this function. We investigate whether push-off force-time relations during the execution of rapid voluntary stepping is affected by a secondary task in older and young adults. METHODS: Nineteen healthy older adults and 12 young adults performed rapid voluntary stepping under single- and dual-task conditions. Peak power, peak force, and time to peak force during preparatory and swing phases of stepping were extracted from center of pressure and ground reaction force data. RESULTS: For dual-task condition compared with single-task condition, older adults show a longer time to reach peak force during the preparation and swing phases compared with young adults (approximately 25% vs approximately 10%, respectively). Peak power and peak force were not affected by a concurrent attention-demanding task. CONCLUSION: Older adults have difficulty allocating sufficient attention for fast muscle recruitment when concurrently challenged by an attention-demanding task.  
  Address Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1079-5006 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19939911 Approved no  
  Call Number Serial 50  
Permanent link to this record
 

 
Author Liebermann, D.G.; Krasovsky, T.; Berman, S. url  doi
openurl 
  Title Planning maximally smooth hand movements constrained to nonplanar workspaces Type Journal Article
  Year 2008 Publication Journal of Motor Behavior Abbreviated Journal J Mot Behav  
  Volume (down) 40 Issue 6 Pages 516-531  
  Keywords Adaptation, Physiological; Adult; Algorithms; Female; Hand/*physiology; Humans; *Intention; Kinesthesis/*physiology; Male; Models, Statistical; Movement/*physiology; Psychomotor Performance/*physiology; Reference Values; Writing  
  Abstract The article characterizes hand paths and speed profiles for movements performed in a nonplanar, 2-dimensional workspace (a hemisphere of constant curvature). The authors assessed endpoint kinematics (i.e., paths and speeds) under the minimum-jerk model assumptions and calculated minimal amplitude paths (geodesics) and the corresponding speed profiles. The authors also calculated hand speeds using the 2/3 power law. They then compared modeled results with the empirical observations. In all, 10 participants moved their hands forward and backward from a common starting position toward 3 targets located within a hemispheric workspace of small or large curvature. Comparisons of modeled observed differences using 2-way RM-ANOVAs showed that movement direction had no clear influence on hand kinetics (p < .05). Workspace curvature affected the hand paths, which seldom followed geodesic lines. Constraining the paths to different curvatures did not affect the hand speed profiles. Minimum-jerk speed profiles closely matched the observations and were superior to those predicted by 2/3 power law (p < .001). The authors conclude that speed and path cannot be unambiguously linked under the minimum-jerk assumption when individuals move the hand in a nonplanar 2-dimensional workspace. In such a case, the hands do not follow geodesic paths, but they preserve the speed profile, regardless of the geometric features of the workspace.  
  Address Department of Physical Therapy, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Israel. dlieberm@post.tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2895 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18980905 Approved no  
  Call Number Serial 33  
Permanent link to this record
 

 
Author Liebermann, D.G.; Ben-David, J.; Schweitzer, N.; Apter, Y.; Parush, A. openurl 
  Title A field study of braking reactions during driving I: Triggering and modulation Type Journal Article
  Year 1995 Publication Ergonomics Abbreviated Journal  
  Volume (down) 38 Issue 9 Pages 1894-1902  
  Keywords  
  Abstract The present experiment was carried out to explore the response of driving subjects to emergency braking. The field trial consisted of driving behind a leading vehicle while the following drivers' responses were recorded by telemetry. A group of 51 individuals performed a series of trials at two driving speeds (60 and 80km/h), two following distances (6 and 12 m), and two braking conditions (real and dummy braking). Not all of these subjects completed all conditions or the minimum number of trials. The dependent variables were the total braking time (TBT) and its subcomponents: braking reaction time (BRT), and accelerator-to-brake movement time (MT). These data were analysed in three separate three-way ANOVAs with repeated measures on all factors. The results showed that when subjects were not aware of the forthcoming braking, the distance and braking conditions had major effects on all dependent variables. At the shorter following distance drivers reacted and moved faster. Similarly, when the brakes were real compared with dummy (i.e. brake lights only) drivers reacted faster. In addition, drivers reacted to onset of brake lights in 83% of the cases when dummy braking was applied, compared with 97% when real brakes were applied. Speed of driving did not show any significant effects and did not appear to influence the cognitive or attentional set to anticipate an emergency manoeuvre. These findings suggest that changes in angular velocity during optic expansion of the leading vehicle may be used as a cue to modulate braking movement, while onset of brake lights alone may be enough to trigger a ‘ballistic’ preventive response.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 57  
Permanent link to this record
 

 
Author Schweitzer, N.; Apter, Y.; Ben-David, J.; Liebermann, D.G.; Parush, A. openurl 
  Title A field study of braking reactions during driving II: Minimum driver braking times Type Journal Article
  Year 1995 Publication Ergonomics Abbreviated Journal  
  Volume (down) 38 Issue 9 Pages 1903-1910  
  Keywords  
  Abstract The minimum total braking time (i.e. the braking reaction time plus the accelerator-to-brake movement time) plays an important role in defining a minimum following gap (MFG). This study was designed to obtain a lower limit for this gap. Total braking times (TBT) of a group of 51 male and female young athletes were monitored during real driving conditions. Sudden braking applied by a leading private passenger vehicle initiated the trials. A within-subject design was used to study the effects of different factors on braking time. Individuals performed a series of semi-counterbalanced trials at two following distances (6 and 12 m), two speeds (60 and 80 km/h) and three expectancy stages (naïve driving, partial knowledge, and full knowledge of the forthcoming manoeuvre). A three-way repeated measures ANOVA showed no major effects of ‘speed’, but major effects of the ‘expectancy’ and the ‘distance’ factors. The experiment yielded a mean TBT of 0·678 s (SD = 0·144 s) for trials averaged over distances and speeds in the naïve condition only. The data emphasize the role played by pre-cues in the braking response prior to emergency stops. Both the level of awareness of the forthcoming manoeuvre and the distance between vehicles appear to determine the response time. The descriptive statistics presented may also provide the basis for an objective, acceptable and legally valid minimum time gap for prosecution of ‘careless’ drivers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 58  
Permanent link to this record
 

 
Author Liebermann, D.G.; Goodman, D. url  doi
openurl 
  Title Effects of visual guidance on the reduction of impacts during landings Type Journal Article
  Year 1991 Publication Ergonomics Abbreviated Journal Ergonomics  
  Volume (down) 34 Issue 11 Pages 1399-1406  
  Keywords Adult; Analysis of Variance; Biomechanics; *Cues; Humans; Male; Motor Activity/*physiology; Psychomotor Performance/physiology; Vision, Ocular/*physiology  
  Abstract While a common view is that vision is essential to motor performance, some recent studies have shown that continuous visual guidance may not always be required within certain time constraints. This study investigated a landing-related task (self-released falls) to assess the extent to which visual information enhances the ability to reduce the impacts at touchdown. Six individuals performed six blocked trials from four height categories in semi-counterbalanced order (5-10, 20-25, 60-65, and 90-95 cm) in vision and no-vision conditions randomly assigned. A series of two-way ANOVA with repeated measures were carried out separately on each dependent variable collapsed over six trials. The results indicated that vision during the flight did not produce softer landings. Indeed, in analysing the first peak (PFP) a main effect for visual condition was revealed in that the mean amplitude was slightly higher when vision was available (F(1,5) = 6.57; p less than 0.05), thus implicating higher forces at impact. The results obtained when the time to the first peak (TFP) was applied showed no significant differences between conditions (F(1,5) less than 1). As expected, in all cases, the analyses yielded significant main effects for the height categories factor. It appears that during self-initiated falls in which the environmental cues are known before the event, visual guidance is not necessary in order to adopt a softer landing strategy.  
  Address Research Department, Wingate Institute, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-0139 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:1800107 Approved no  
  Call Number Serial 55  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: