|
Records |
Links |
|
Author |
Liebermann, D.G.; Katz, L.; Hughes, M.D.; Bartlett, R.M.; McClements, J.; Franks, I.M. |
|
|
Title |
Advances in the application of information technology to sport performance |
Type |
Journal Article |
|
Year |
2002 |
Publication |
Journal of Sports Sciences |
Abbreviated Journal |
J Sports Sci |
|
|
Volume |
20 |
Issue |
10 |
Pages |
755-769 |
|
|
Keywords |
*Biofeedback, Psychology; *Computer Simulation; Humans; Models, Biological; Physical Education and Training/*methods; Psychomotor Performance/physiology; Sports Medicine/methods; *Task Performance and Analysis; Videotape Recording |
|
|
Abstract |
This paper overviews the diverse information technologies that are used to provide athletes with relevant feedback. Examples taken from various sports are used to illustrate selected applications of technology-based feedback. Several feedback systems are discussed, including vision, audition and proprioception. Each technology described here is based on the assumption that feedback would eventually enhance skill acquisition and sport performance and, as such, its usefulness to athletes and coaches in training is critically evaluated. |
|
|
Address |
Department of Physical Therapy, Sackler Faculty of Medicine, University of Tel Aviv, Israel |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0264-0414 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:12363293 |
Approved |
no |
|
|
Call Number |
|
Serial |
40 |
|
Permanent link to this record |
|
|
|
|
Author |
Liebermann, D.G.; Buchman, A.S.; Franks, I.M. |
|
|
Title |
Enhancement of motor rehabilitation through the use of information technologies |
Type |
Journal Article |
|
Year |
2006 |
Publication |
Clinical Biomechanics (Bristol, Avon) |
Abbreviated Journal |
Clin Biomech (Bristol, Avon) |
|
|
Volume |
21 |
Issue |
1 |
Pages |
8-20 |
|
|
Keywords |
Biotechnology/*methods; Humans; Medical Informatics/*methods; Motion Therapy, Continuous Passive/*methods; Movement Disorders/*rehabilitation; Musculoskeletal Manipulations/methods; Rehabilitation/*methods; Robotics/*methods; Therapy, Computer-Assisted/*methods |
|
|
Abstract |
The recent development of information technologies has dramatically increased the tools available for facilitating motor rehabilitation. This review focuses on technologies which can be used to augment movement-related information both to patients as well as to their therapists. A brief outline of the motor system emphasizes the role of spinal motor neurons in the control of voluntary movement and rehabilitative efforts. Technologies which induce passive motion to stimulate spinal motor output as well as technologies that stimulate active voluntary movements are discussed. Finally, we review technologies and notational methods that can be used to quantify and assess the quality of movement for evaluating the efficacy of motor rehabilitation efforts. We conclude that stronger evidence is necessary to determine the applicability of the wide range of technologies now available to clinical rehabilitation efforts. |
|
|
Address |
Department of Physical Therapy, Sackler Faculty of Medicine, University of Tel Aviv, Israel. dlieberm@post.tau.ac.il |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0268-0033 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:16198463 |
Approved |
no |
|
|
Call Number |
|
Serial |
49 |
|
Permanent link to this record |
|
|
|
|
Author |
Merdler, T.; Liebermann, D.G.; Levin, M.F.; Berman, S. |
|
|
Title |
Arm-plane representation of shoulder compensation during pointing movements in patients with stroke |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology |
Abbreviated Journal |
J Electromyogr Kinesiol |
|
|
Volume |
23 |
Issue |
4 |
Pages |
938–947 |
|
|
Keywords |
Kinematics; Arm movement; Rehabilitation |
|
|
Abstract |
Improvements in functional motor activities are often accompanied by motor compensations to overcome persistent motor impairment in the upper limb. Kinematic analysis is used to objectively quantify movement patterns including common motor compensations such as excessive trunk displacement during reaching. However, a common motor compensation to assist reaching, shoulder abduction, is not adequately characterized by current motion analysis approaches. We apply the arm-plane representation that accounts for the co-variation between movements of the whole arm, and investigate its ability to identify and quantify compensatory arm movements in stroke subjects when making forward arm reaches. This method has not been previously applied to the analysis of motion deficits. Sixteen adults with right post-stroke hemiparesis and eight healthy age-matched controls reached in three target directions (14 trials/target; sampling rate: 100Hz). Arm-plane movement was validated against endpoint, joint, and trunk kinematics and compared between groups. In stroke subjects, arm-plane measures were correlated with arm impairment (Fugl-Meyer Assessment) and ability (Box and Blocks) scores and were more sensitive than clinical measures to detect mild motor impairment. Arm-plane motion analysis provides new information about motor compensations involving the co-variation of shoulder and elbow movements that may help to understand the underlying motor deficits in patients with stroke. |
|
|
Address |
Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1050-6411 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:23566477 |
Approved |
no |
|
|
Call Number |
|
Serial |
69 |
|
Permanent link to this record |
|
|
|
|
Author |
Melzer, I.; Krasovsky, T.; Oddsson, L.I.E.; Liebermann, D.G. |
|
|
Title |
Age-related differences in lower-limb force-time relation during the push-off in rapid voluntary stepping |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Clinical Biomechanics (Bristol, Avon) |
Abbreviated Journal |
Clin Biomech (Bristol, Avon) |
|
|
Volume |
25 |
Issue |
10 |
Pages |
989-994 |
|
|
Keywords |
Accidental Falls/prevention & control; Age Factors; Aged; Aged, 80 and over; Aging/physiology; *Biomechanics; Female; Gait/*physiology; Humans; Male; *Postural Balance; Walking/*physiology |
|
|
Abstract |
BACKGROUND: This study investigated the force-time relationship during the push-off stage of a rapid voluntary step in young and older healthy adults, to study the assumption that when balance is lost a quick step may preserve stability. The ability to achieve peak propulsive force within a short time is critical for the performance of such a quick powerful step. We hypothesized that older adults would achieve peak force and power in significantly longer times compared to young people, particularly during the push-off preparatory phase. METHODS: Fifteen young and 15 older volunteers performed rapid forward steps while standing on a force platform. Absolute anteroposterior and body weight normalized vertical forces during the push-off in the preparation and swing phases were used to determine time to peak and peak force, and step power. Two-way analyses of variance ('Group' [young-older] by 'Phase' [preparation-swing]) were used to assess our hypothesis (P </= 0.05). FINDINGS: Older people exerted lower peak forces (anteroposterior and vertical) than young adults, but not necessarily lower peak power. More significantly, they showed a longer time to peak force, particularly in the vertical direction during the preparation phase. INTERPRETATIONS: Older adults generate propulsive forces slowly and reach lower magnitudes, mainly during step preparation. The time to achieve a peak force and power, rather than its actual magnitude, may account for failures in quickly performing a preventive action. Such delay may be associated with the inability to react and recruit muscles quickly. Thus, training elderly to step fast in response to relevant cues may be beneficial in the prevention of falls. |
|
|
Address |
Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0268-0033 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:20724044 |
Approved |
no |
|
|
Call Number |
|
Serial |
51 |
|
Permanent link to this record |
|
|
|
|
Author |
Biess, A.; Liebermann, D.G.; Flash, T. |
|
|
Title |
A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics |
Type |
Journal Article |
|
Year |
2007 |
Publication |
The Journal of Neuroscience : the Official Journal of the Society for Neuroscience |
Abbreviated Journal |
J Neurosci |
|
|
Volume |
27 |
Issue |
48 |
Pages |
13045-13064 |
|
|
Keywords |
Analysis of Variance; Arm/physiology; Biomechanics; *Computer Simulation; Humans; *Models, Biological; Movement/*physiology; *Nonlinear Dynamics; Posture/physiology; Psychomotor Performance/*physiology; Range of Motion, Articular/physiology; Reaction Time/physiology; Space Perception/*physiology; Time Factors; Torque |
|
|
Abstract |
Few computational models have addressed the spatiotemporal features of unconstrained three-dimensional (3D) arm motion. Empirical observations made on hand paths, speed profiles, and arm postures during point-to-point movements led to the assumption that hand path and arm posture are independent of movement speed, suggesting that the geometric and temporal properties of movements are decoupled. In this study, we present a computational model of 3D movements for an arm with four degrees of freedom based on the assumption that optimization principles are separately applied at the geometric and temporal levels of control. Geometric properties (path and posture) are defined in terms of geodesic paths with respect to the kinetic energy metric in the Riemannian configuration space. Accordingly, a geodesic path can be generated with less muscular effort than on any other, nongeodesic path, because the sum of all configuration-speed-dependent torques vanishes. The temporal properties of the movement (speed) are determined in task space by minimizing the squared jerk along the selected end-effector path. The integration of both planning levels into a single spatiotemporal representation simplifies the control of arm dynamics along geodesic paths and results in movements with near minimal torque change and minimal peak value of kinetic energy. Thus, the application of Riemannian geometry allows for a reconciliation of computational models previously proposed for the description of arm movements. We suggest that geodesics are an emergent property of the motor system through the exploration of dynamical space. Our data validated the predictions for joint trajectories, hand paths, final postures, speed profiles, and driving torques. |
|
|
Address |
Department of Mathematics, Weizmann Institute of Science, 76100 Rehovot, Israel. armin.biess@weizmann.ac.il |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0270-6474 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:18045899 |
Approved |
no |
|
|
Call Number |
|
Serial |
35 |
|
Permanent link to this record |