toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Krasovsky, T.; Berman, S.; Liebermann, D.G. url  doi
openurl 
  Title (up) Kinematic features of continuous hand reaching movements under simple and complex rhythmical constraints Type Journal Article
  Year 2010 Publication Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology Abbreviated Journal J Electromyogr Kinesiol  
  Volume 20 Issue 4 Pages 636-641  
  Keywords *Acoustic Stimulation; Adult; Biomechanics; *Cues; Female; Hand/*physiology; Humans; Male; Movement/*physiology  
  Abstract BACKGROUND: Auditory cues are known to alter movement kinematics in healthy people as well as in people with neurological conditions (e.g., Parkinson's disease or stroke). Pacing movement to rhythmical constraints is known to change both the spatial and temporal features of movement. However, the effect of complexity of pacing on the spatial and temporal kinematic properties is still poorly understood. The current study investigated spatial and temporal aspects of movement (path and speed, respectively) and their integration while subjects followed simple isochronous or complex non-isochronous rhythmical constraints. Spatiotemporal decoupling was expected under the latter constraint. METHODS: Ten subjects performed point-to-point hand movements towards visual targets on the surface of a hemisphere, while following continuous auditory cues of different pace and meter. The spatial and temporal properties of movement were compared to geodesic paths and unimodal bell-shaped speed profiles, respectively. Multiple two-way RM-ANOVAs (pace [1-2 Hz] x meter [duple-triple]) were performed on the different kinematic variables calculated to assess hand deviations from the model data (p< or = 0.05). RESULTS: As expected, increasing pace resulted in straighter hand paths and smoother speed profiles. Meter, however, affected only the path (shorter and straighter under triple) without significantly changing speed. Such an effect was observed at the slow pace only. CONCLUSIONS: Under simple rhythmic cues, an increase in pace causes spontaneous adjustments in spatial features (straighter hand paths) while preserving temporal ones (maximally-smoothed hand speeds). Complex rhythmical cues in contrast perturb spatiotemporal coupling and challenge movement control. These results may have important practical implications in motor rehabilitation.  
  Address Department of Physical and Occupational Therapy, Faculty of Medicine, McGill University, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-6411 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20382031 Approved no  
  Call Number Serial 32  
Permanent link to this record
 

 
Author Roijezon, U.; Djupsjobacka, M.; Bjorklund, M.; Hager-Ross, C.; Grip, H.; Liebermann, D.G. url  doi
openurl 
  Title (up) Kinematics of fast cervical rotations in persons with chronic neck pain: a cross-sectional and reliability study Type Journal Article
  Year 2010 Publication BMC Musculoskeletal Disorders Abbreviated Journal BMC Musculoskelet Disord  
  Volume 11 Issue Pages 222  
  Keywords Adult; Aged; Biomechanics/*physiology; Cervical Vertebrae/*physiopathology; Chronic Disease; Cross-Sectional Studies; Female; Head Movements/*physiology; Humans; Middle Aged; Neck Pain/*diagnosis/*etiology/physiopathology; Physical Examination/methods; Reproducibility of Results; Rotation/*adverse effects; Time Factors; Young Adult  
  Abstract BACKGROUND: Assessment of sensorimotor function is useful for classification and treatment evaluation of neck pain disorders. Several studies have investigated various aspects of cervical motor functions. Most of these have involved slow or self-paced movements, while few have investigated fast cervical movements. Moreover, the reliability of assessment of fast cervical axial rotation has, to our knowledge, not been evaluated before. METHODS: Cervical kinematics was assessed during fast axial head rotations in 118 women with chronic nonspecific neck pain (NS) and compared to 49 healthy controls (CON). The relationship between cervical kinematics and symptoms, self-rated functioning and fear of movement was evaluated in the NS group. A sub-sample of 16 NS and 16 CON was re-tested after one week to assess the reliability of kinematic variables. Six cervical kinematic variables were calculated: peak speed, range of movement, conjunct movements and three variables related to the shape of the speed profile. RESULTS: Together, peak speed and conjunct movements had a sensitivity of 76% and a specificity of 78% in discriminating between NS and CON, of which the major part could be attributed to peak speed (NS: 226 +/- 88 degrees /s and CON: 348 +/- 92 degrees /s, p < 0.01). Peak speed was slower in NS compared to healthy controls and even slower in NS with comorbidity of low-back pain. Associations were found between reduced peak speed and self-rated difficulties with running, performing head movements, car driving, sleeping and pain. Peak speed showed reasonably high reliability, while the reliability for conjunct movements was poor. CONCLUSIONS: Peak speed of fast cervical axial rotations is reduced in people with chronic neck pain, and even further reduced in subjects with concomitant low back pain. Fast cervical rotation test seems to be a reliable and valid tool for assessment of neck pain disorders on group level, while a rather large between subject variation and overlap between groups calls for caution in the interpretation of individual assessments.  
  Address Centre for Musculoskeletal Research, University of Gavle, Sweden. ulrik.roijezon@ltu.se  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1471-2474 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:20875135 Approved no  
  Call Number Serial 31  
Permanent link to this record
 

 
Author Liebermann, D.G.; Krasovsky, T.; Berman, S. url  doi
openurl 
  Title (up) Planning maximally smooth hand movements constrained to nonplanar workspaces Type Journal Article
  Year 2008 Publication Journal of Motor Behavior Abbreviated Journal J Mot Behav  
  Volume 40 Issue 6 Pages 516-531  
  Keywords Adaptation, Physiological; Adult; Algorithms; Female; Hand/*physiology; Humans; *Intention; Kinesthesis/*physiology; Male; Models, Statistical; Movement/*physiology; Psychomotor Performance/*physiology; Reference Values; Writing  
  Abstract The article characterizes hand paths and speed profiles for movements performed in a nonplanar, 2-dimensional workspace (a hemisphere of constant curvature). The authors assessed endpoint kinematics (i.e., paths and speeds) under the minimum-jerk model assumptions and calculated minimal amplitude paths (geodesics) and the corresponding speed profiles. The authors also calculated hand speeds using the 2/3 power law. They then compared modeled results with the empirical observations. In all, 10 participants moved their hands forward and backward from a common starting position toward 3 targets located within a hemispheric workspace of small or large curvature. Comparisons of modeled observed differences using 2-way RM-ANOVAs showed that movement direction had no clear influence on hand kinetics (p < .05). Workspace curvature affected the hand paths, which seldom followed geodesic lines. Constraining the paths to different curvatures did not affect the hand speed profiles. Minimum-jerk speed profiles closely matched the observations and were superior to those predicted by 2/3 power law (p < .001). The authors conclude that speed and path cannot be unambiguously linked under the minimum-jerk assumption when individuals move the hand in a nonplanar 2-dimensional workspace. In such a case, the hands do not follow geodesic paths, but they preserve the speed profile, regardless of the geometric features of the workspace.  
  Address Department of Physical Therapy, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Israel. dlieberm@post.tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2895 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18980905 Approved no  
  Call Number Serial 33  
Permanent link to this record
 

 
Author Tamir-Ostrover, H.; Hassin-Baer, S.; Fay-Karmon, T.; Friedman, J. url  doi
openurl 
  Title (up) Quantifying Changes in Dexterity as a Result of Piano Training in People with Parkinson's Disease Type Journal Article
  Year 2024 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 24 Issue 11 Pages  
  Keywords Humans; *Parkinson Disease/physiopathology; Pilot Projects; Male; Aged; Female; Quality of Life; Middle Aged; Motor Skills/physiology; Music; Surveys and Questionnaires; Activities of Daily Living; Fingers/physiology/physiopathology; Parkinson's disease; dexterity; force sensors; music; piano; sonification; training; uncontrolled manifold  
  Abstract People with Parkinson's disease often show deficits in dexterity, which, in turn, can lead to limitations in performing activities of daily life. Previous studies have suggested that training in playing the piano may improve or prevent a decline in dexterity in this population. In this pilot study, we tested three participants on a six-week, custom, piano-based training protocol, and quantified dexterity before and after the intervention using a sensor-enabled version of the nine-hole peg test, the box and block test, a test of finger synergies using unidimensional force sensors, and the Quantitative Digitography test using a digital piano, as well as selected relevant items from the motor parts of the MDS-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) and the Parkinson's Disease Questionnaire (PDQ-39) quality of life questionnaire. The participants showed improved dexterity following the training program in several of the measures used. This pilot study proposes measures that can track changes in dexterity as a result of practice in people with Parkinson's disease and describes a potential protocol that needs to be tested in a larger cohort.  
  Address Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:38894110; PMCID:PMC11174779 Approved no  
  Call Number Serial 124  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: