|
Records |
Links |
|
Author |
Kaufman-Cohen, Y.; Portnoy, S.; Levanon, Y.; Friedman, J. |


|
|
Title |
Does Object Height Affect the Dart Throwing Motion Angle during Seated Activities of Daily Living? |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Journal of Motor Behavior |
Abbreviated Journal |
J Mot Behav |
|
|
Volume |
|
Issue |
|
Pages |
1-10 |
|
|
Keywords |
dart throwing motion (DTM); heights; kinematics; seated activities of daily living (ADL); upper extremity; wrist rehabilitation |
|
|
Abstract |
Complex wrist motions are needed to complete various daily activities. Analyzing the multidimensional motion of the wrist is crucial for understanding our functional movement. Several studies have shown that numerous activities of daily livings (ADLs) are performed using an oblique plane of wrist motion from radial-extension to ulnar-flexion, named the Dart Throwing Motion (DTM) plane. To the best of our knowledge, the DTM plane angle performed during ADLs has not been compared between different heights (e.g. table, shoulder and head height), as is common when performing day-to-day tasks. In this study, we compared DTM plane angles when performing different ADLs at three different heights and examined the relationship between DTM plane angles and limb position. We found that height had a significant effect on the DTM plane angles – the mean DTM plane angle was greater at the lower level compared to the mid and higher levels. A significant effect of shoulder orientation on mean DTM plane angles was shown in the sagittal and coronal planes. Our findings support the importance of training daily tasks at different heights during rehabilitation following wrist injuries, in order to explore a large range of DTM angles, to accommodate needs of common ADLs. |
|
|
Address |
|
|
|
Corporate Author  |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-2895 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:31359843 |
Approved |
no |
|
|
Call Number |
|
Serial |
100 |
|
Permanent link to this record |
|
|
|
|
Author |
Krasovsky, T.; Weiss, P.L.; Zuckerman, O.; Bar, A.; Keren-Capelovitch, T.; Friedman, J. |


|
|
Title |
DataSpoon: Validation of an Instrumented Spoon for Assessment of Self-Feeding |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Sensors (Basel, Switzerland) |
Abbreviated Journal |
Sensors (Basel) |
|
|
Volume |
20 |
Issue |
7 |
Pages |
|
|
|
Keywords |
concurrent validity; feasibility; kinematics; outcome assessment; rehabilitation |
|
|
Abstract |
Clinically feasible assessment of self-feeding is important for adults and children with motor impairments such as stroke or cerebral palsy. However, no validated assessment tool for self-feeding kinematics exists. This work presents an initial validation of an instrumented spoon (DataSpoon) developed as an evaluation tool for self-feeding kinematics. Ten young, healthy adults (three male; age 27.2 +/- 6.6 years) used DataSpoon at three movement speeds (slow, comfortable, fast) and with three different grips: “natural”, power and rotated power grip. Movement kinematics were recorded concurrently using DataSpoon and a magnetic motion capture system (trakSTAR). Eating events were automatically identified for both systems and kinematic measures were extracted from yaw, pitch and roll (YPR) data as well as from acceleration and tangential velocity profiles. Two-way, mixed model Intraclass correlation coefficients (ICC) and 95% limits of agreement (LOA) were computed to determine agreement between the systems for each kinematic variable. Most variables demonstrated fair to excellent agreement. Agreement for measures of duration, pitch and roll exceeded 0.8 (excellent agreement) for >80% of speed and grip conditions, whereas lower agreement (ICC < 0.46) was measured for tangential velocity and acceleration. A bias of 0.01-0.07 s (95% LOA [-0.54, 0.53] to [-0.63, 0.48]) was calculated for measures of duration. DataSpoon enables automatic detection of self-feeding using simple, affordable movement sensors. Using movement kinematics, variables associated with self-feeding can be identified and aid clinical reasoning for adults and children with motor impairments. |
|
|
Address |
Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel |
|
|
Corporate Author  |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1424-8220 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:32283624; PMCID:PMC7180859 |
Approved |
no |
|
|
Call Number |
|
Serial |
104 |
|
Permanent link to this record |