toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Levin, M.F.; Berman, S.; Weiss, N.; Parmet, Y.; Banina, M.C.; Frenkel-Toledo, S.; Soroker, N.; Solomon, J.M.; Liebermann, D.G. url  doi
openurl 
  Title ENHANCE proof-of-concept three-arm randomized trial: effects of reaching training of the hemiparetic upper limb restricted to the spasticity-free elbow range Type
  Year 2023 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 13 Issue 1 Pages (down) 22934  
  Keywords Humans; Elbow; *Transcranial Direct Current Stimulation; Muscle Spasticity/therapy/complications; Upper Extremity; *Elbow Joint; *Stroke/complications; *Stroke Rehabilitation/methods  
  Abstract Post-stroke motor recovery processes remain unknown. Timescales and patterns of upper-limb (UL) recovery suggest a major impact of biological factors, with modest contributions from rehabilitation. We assessed a novel impairment-based training motivated by motor control theory where reaching occurs within the spasticity-free elbow range. Patients with subacute stroke (</= 6 month; n = 46) and elbow flexor spasticity were randomly allocated to a 10-day UL training protocol, either personalized by restricting reaching to the spasticity-free elbow range defined by the tonic stretch reflex threshold (TSRT) or non-personalized (non-restricted) and with/without anodal transcranial direct current stimulation. Outcomes assessed before, after, and 1 month post-intervention were elbow flexor TSRT angle and reach-to-grasp arm kinematics (primary) and stretch reflex velocity sensitivity, clinical impairment, and activity (secondary). Results were analyzed for 3 groups as well as those of the effects of impairment-based training. Clinical measures improved in both groups. Spasticity-free range training resulted in faster and smoother reaches, smaller (i.e., better) arm-plane path length, and closer-to-normal shoulder/elbow movement patterns. Non-personalized training improved clinical scores without improving arm kinematics, suggesting that clinical measures do not account for movement quality. Impairment-based training within a spasticity-free elbow range is promising since it may improve clinical scores together with arm movement quality.Clinical Trial Registration: URL: http://www.clinicaltrials.gov . Unique Identifier: NCT02725853; Initial registration date: 01/04/2016.  
  Address Department of Physical Therapy, Faculty of Medicine, Stanley Steyer School of Health Professions, Tel Aviv University, POB 39040, 61390, Ramat Aviv, Tel Aviv, Israel. dlieberm@tauex.tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:38129527; PMCID:PMC10739929 Approved no  
  Call Number Serial 121  
Permanent link to this record
 

 
Author Lowenthal-Raz, J.; Liebermann, D.G.; Friedman, J.; Soroker, N. url  doi
openurl 
  Title Kinematic descriptors of arm reaching movement are sensitive to hemisphere-specific immediate neuromodulatory effects of transcranial direct current stimulation post stroke Type Journal Article
  Year 2024 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 14 Issue 1 Pages (down) 11971  
  Keywords Humans; *Transcranial Direct Current Stimulation/methods; Male; Female; Middle Aged; *Stroke/physiopathology/therapy; Biomechanical Phenomena; Aged; *Arm/physiopathology; *Movement/physiology; *Stroke Rehabilitation/methods; Single-Blind Method; Cross-Over Studies  
  Abstract Transcranial direct current stimulation (tDCS) exerts beneficial effects on motor recovery after stroke, presumably by enhancement of adaptive neural plasticity. However, patients with extensive damage may experience null or deleterious effects with the predominant application mode of anodal (excitatory) stimulation of the damaged hemisphere. In such cases, excitatory stimulation of the non-damaged hemisphere might be considered. Here we asked whether tDCS exerts a measurable effect on movement quality of the hemiparetic upper limb, following just a single treatment session. Such effect may inform on the hemisphere that should be excited. Using a single-blinded crossover experimental design, stroke patients and healthy control subjects were assessed before and after anodal, cathodal and sham tDCS, each provided during a single session of reaching training (repeated point-to-point hand movement on an electronic tablet). Group comparisons of endpoint kinematics at baseline-number of peaks in the speed profile (NoP; smoothness), hand-path deviations from the straight line (SLD; accuracy) and movement time (MT; speed)-disclosed greater NoP, larger SLD and longer MT in the stroke group. NoP and MT revealed an advantage for anodal compared to sham stimulation of the lesioned hemisphere. NoP and MT improvements under anodal stimulation of the non-lesioned hemisphere correlated positively with the severity of hemiparesis. Damage to specific cortical regions and white-matter tracts was associated with lower kinematic gains from tDCS. The study shows that simple descriptors of movement kinematics of the hemiparetic upper limb are sensitive enough to demonstrate gain from neuromodulation by tDCS, following just a single session of reaching training. Moreover, the results show that tDCS-related gain is affected by the severity of baseline motor impairment, and by lesion topography.  
  Address Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel. nachum@soroker.online  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:38796610; PMCID:PMC11127956 Approved no  
  Call Number Serial 125  
Permanent link to this record
 

 
Author Raveh, E.; Portnoy, S.; Friedman, J. pdf  url
doi  openurl
  Title Myoelectric Prosthesis Users Improve Performance Time and Accuracy Using Vibrotactile Feedback When Visual Feedback Is Disturbed Type Journal Article
  Year 2018 Publication Archives of Physical Medicine and Rehabilitation Abbreviated Journal Arch Phys Med Rehabil  
  Volume 99 Issue 11 Pages (down) 2263-2270  
  Keywords Amputation; Prosthesis; Rehabilitation; Sensory feedback; Visual feedback  
  Abstract OBJECTIVE: To evaluate the effects of adding vibrotactile feedback (VTF) in myoelectric prosthesis users during performance of a functional task when visual feedback is disturbed. DESIGN: A repeated-measures design with a counter-balanced order of 3 conditions. SETTING: Laboratory setting. PARTICIPANTS: Transradial amputees using a myoelectric prosthesis with normal or corrected eyesight (N=12, median age 65+/-13y). Exclusion criteria were orthopedic or neurologic problems. INTERVENTIONS: All participants performed the modified Box and Blocks Test, grasping and manipulating 16 blocks over a partition using their myoelectric prosthesis. This was performed 3 times: in full light, in a dark room without VTF, and in a dark room with VTF. MAIN OUTCOME MEASURES: Performance time, that is, the time needed to transfer 1 block, and accuracy during performance, measured by number of empty grips, empty transitions with no block and block drops from the hand. RESULTS: Significant differences were found in all outcome measures when VTF was added, with improved performance time (4.2 vs 5.3s) and a reduced number of grasping errors (3.0 vs 6.5 empty grips, 1.5 vs 4 empty transitions, 2.0 vs 4.5 block drops). CONCLUSIONS: Adding VTF to myoelectric prosthesis users has positive effects on performance time and accuracy when visual feedback is disturbed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-9993 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29935153 Approved no  
  Call Number Serial 96  
Permanent link to this record
 

 
Author Merdler, T.; Liebermann, D.G.; Levin, M.F.; Berman, S. url  doi
openurl 
  Title Arm-plane representation of shoulder compensation during pointing movements in patients with stroke Type Journal Article
  Year 2013 Publication Journal of Electromyography and Kinesiology : Official Journal of the International Society of Electrophysiological Kinesiology Abbreviated Journal J Electromyogr Kinesiol  
  Volume 23 Issue 4 Pages (down) 938–947  
  Keywords Kinematics; Arm movement; Rehabilitation  
  Abstract Improvements in functional motor activities are often accompanied by motor compensations to overcome persistent motor impairment in the upper limb. Kinematic analysis is used to objectively quantify movement patterns including common motor compensations such as excessive trunk displacement during reaching. However, a common motor compensation to assist reaching, shoulder abduction, is not adequately characterized by current motion analysis approaches. We apply the arm-plane representation that accounts for the co-variation between movements of the whole arm, and investigate its ability to identify and quantify compensatory arm movements in stroke subjects when making forward arm reaches. This method has not been previously applied to the analysis of motion deficits. Sixteen adults with right post-stroke hemiparesis and eight healthy age-matched controls reached in three target directions (14 trials/target; sampling rate: 100Hz). Arm-plane movement was validated against endpoint, joint, and trunk kinematics and compared between groups. In stroke subjects, arm-plane measures were correlated with arm impairment (Fugl-Meyer Assessment) and ability (Box and Blocks) scores and were more sensitive than clinical measures to detect mild motor impairment. Arm-plane motion analysis provides new information about motor compensations involving the co-variation of shoulder and elbow movements that may help to understand the underlying motor deficits in patients with stroke.  
  Address Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Beer-Sheva, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-6411 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:23566477 Approved no  
  Call Number Serial 69  
Permanent link to this record
 

 
Author Liebermann, D.G.; Buchman, A.S.; Franks, I.M. url  doi
openurl 
  Title Enhancement of motor rehabilitation through the use of information technologies Type Journal Article
  Year 2006 Publication Clinical Biomechanics (Bristol, Avon) Abbreviated Journal Clin Biomech (Bristol, Avon)  
  Volume 21 Issue 1 Pages (down) 8-20  
  Keywords Biotechnology/*methods; Humans; Medical Informatics/*methods; Motion Therapy, Continuous Passive/*methods; Movement Disorders/*rehabilitation; Musculoskeletal Manipulations/methods; Rehabilitation/*methods; Robotics/*methods; Therapy, Computer-Assisted/*methods  
  Abstract The recent development of information technologies has dramatically increased the tools available for facilitating motor rehabilitation. This review focuses on technologies which can be used to augment movement-related information both to patients as well as to their therapists. A brief outline of the motor system emphasizes the role of spinal motor neurons in the control of voluntary movement and rehabilitative efforts. Technologies which induce passive motion to stimulate spinal motor output as well as technologies that stimulate active voluntary movements are discussed. Finally, we review technologies and notational methods that can be used to quantify and assess the quality of movement for evaluating the efficacy of motor rehabilitation efforts. We conclude that stronger evidence is necessary to determine the applicability of the wide range of technologies now available to clinical rehabilitation efforts.  
  Address Department of Physical Therapy, Sackler Faculty of Medicine, University of Tel Aviv, Israel. dlieberm@post.tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0268-0033 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:16198463 Approved no  
  Call Number Serial 49  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: