|
Records |
Links |
|
Author |
Steinhart, S.; Weiss, P.L.; Friedman, J. |
|
|
Title |
Proximal and distal movement patterns during a graphomotor task in typically developing children and children with handwriting problems |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Journal of Neuroengineering and Rehabilitation |
Abbreviated Journal |
J Neuroeng Rehabil |
|
|
Volume |
18 |
Issue |
1 |
Pages |
178 |
|
|
Keywords |
Arm; Biomechanical Phenomena; Child; *Handwriting; Humans; Motor Skills; *Movement; Upper Extremity; Distal joints; Handwriting; Motor control; Movement analysis; Proximal; Stability |
|
|
Abstract |
BACKGROUND: Therapists specializing in handwriting difficulties in children often address motor problems including both proximal and distal movements in the upper extremity. Kinematic measures can be used to investigate various aspects of handwriting. This study examined differences in movement patterns in proximal and distal joints of the upper extremity during graphomotor tasks between typically developing children with and without handwriting problems. Additionally, it explored relationships between movement patterns, speed, and legibility of writing. METHODS: Forty-one children, aged 7-11 years, were assessed with the Aleph Aleph Ktav Yad Hebrew Handwriting assessment and the Beery Test of Visual Motor Integration and, based on their scores, were divided into a research group (with handwriting difficulties) and a control group (without handwriting difficulties). Upper extremity joint movement patterns were analyzed with a motion capture system. Differences in the quality of shapes traced and copied on a graphics tablet positioned horizontally and vertically were compared. Between-group differences and relationships with speed and legibility were analyzed. RESULTS: In both groups, there was greater movement in the distal compared to the proximal joints, greater movement when performing the task in a horizontal compared to a vertical plane, and greater movement when tracing than copying. Joint movements in the arm executed scaled-down versions of the shapes being drawn. While the amount of joint displacement was similar between groups, children in the research group showed greater dissimilarity between the drawn shape and the shape produced by the proximal joints. Finally, the drawing measure on the tablet was a significant predictor of legibility, speed of writing, visual motor integration and motor coordination, whereas the dissimilarity measure of joint movement was a significant predictor of speed of writing and motor coordination. CONCLUSIONS: This study provides support for the role of the distal upper extremity joints in the writing process and some guidance to assist clinicians in devising treatment strategies for movement-related handwriting problems. While we observed differences in proximal joint movements between the children with and without handwriting difficulties, the extent to which they are responsible for the differences in drawing quality remains to be determined. Further studies should use a similar methodology to examine additional tasks such as drawing shapes of varying sizes. |
|
|
Address |
Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel. jason@tau.ac.il |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1743-0003 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:34930334; PMCID:PMC8690895 |
Approved |
no |
|
|
Call Number |
|
Serial |
118 |
|
Permanent link to this record |
|
|
|
|
Author |
Liebermann, D.G.; Krasovsky, T.; Berman, S. |
|
|
Title |
Planning maximally smooth hand movements constrained to nonplanar workspaces |
Type |
Journal Article |
|
Year |
2008 |
Publication |
Journal of Motor Behavior |
Abbreviated Journal |
J Mot Behav |
|
|
Volume |
40 |
Issue |
6 |
Pages |
516-531 |
|
|
Keywords |
Adaptation, Physiological; Adult; Algorithms; Female; Hand/*physiology; Humans; *Intention; Kinesthesis/*physiology; Male; Models, Statistical; Movement/*physiology; Psychomotor Performance/*physiology; Reference Values; Writing |
|
|
Abstract |
The article characterizes hand paths and speed profiles for movements performed in a nonplanar, 2-dimensional workspace (a hemisphere of constant curvature). The authors assessed endpoint kinematics (i.e., paths and speeds) under the minimum-jerk model assumptions and calculated minimal amplitude paths (geodesics) and the corresponding speed profiles. The authors also calculated hand speeds using the 2/3 power law. They then compared modeled results with the empirical observations. In all, 10 participants moved their hands forward and backward from a common starting position toward 3 targets located within a hemispheric workspace of small or large curvature. Comparisons of modeled observed differences using 2-way RM-ANOVAs showed that movement direction had no clear influence on hand kinetics (p < .05). Workspace curvature affected the hand paths, which seldom followed geodesic lines. Constraining the paths to different curvatures did not affect the hand speed profiles. Minimum-jerk speed profiles closely matched the observations and were superior to those predicted by 2/3 power law (p < .001). The authors conclude that speed and path cannot be unambiguously linked under the minimum-jerk assumption when individuals move the hand in a nonplanar 2-dimensional workspace. In such a case, the hands do not follow geodesic paths, but they preserve the speed profile, regardless of the geometric features of the workspace. |
|
|
Address |
Department of Physical Therapy, The Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Israel. dlieberm@post.tau.ac.il |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0022-2895 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:18980905 |
Approved |
no |
|
|
Call Number |
|
Serial |
33 |
|
Permanent link to this record |