toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Banina, M.C.; Molad, R.; Solomon, J.S.; Berman, S.; Soroker, N.; Frenkel-Toledo, S.; Liebermann, D.G.; Levin, M.F. url  doi
openurl 
  Title Exercise intensity of the upper limb can be enhanced using a virtual rehabilitation system Type Journal Article
  Year 2020 Publication Disability and Rehabilitation. Assistive Technology Abbreviated Journal Disabil Rehabil Assist Technol  
  Volume Issue Pages 1-7  
  Keywords Stroke; difficulty; exercise therapy; intensity; personalized exercise; upper limb; virtual reality  
  Abstract (up) Purpose: Motor recovery of the upper limb (UL) is related to exercise intensity, defined as movement repetitions divided by minutes in active therapy, and task difficulty. However, the degree to which UL training in virtual reality (VR) applications deliver intense and challenging exercise and whether these factors are considered in different centres for people with different sensorimotor impairment levels is not evidenced. We determined if (1) a VR programme can deliver high UL exercise intensity in people with sub-acute stroke across different environments and (2) exercise intensity and difficulty differed among patients with different levels of UL sensorimotor impairment.Methods: Participants with sub-acute stroke (<6 months) with Fugl-Meyer scores ranging from 14 to 57, completed 10 approximately 50-min UL training sessions using three unilateral and one bilateral VR activity over 2 weeks in centres located in three countries. Training time, number of movement repetitions, and success rates were extracted from game activity logs. Exercise intensity was calculated for each participant, related to UL impairment, and compared between centres.Results: Exercise intensity was high and was progressed similarly in all centres. Participants had most difficulty with bilateral and lateral reaching activities. Exercise intensity was not, while success rate of only one unilateral activity was related to UL severity.Conclusion: The level of intensity attained with this VR exercise programme was higher than that reported in current stroke therapy practice. Although progression through different activity levels was similar between centres, clearer guidelines for exercise progression should be provided by the VR application.Implications for rehabilitationVR rehabilitation systems can be used to deliver intensive exercise programmes.VR rehabilitation systems need to be designed with measurable progressions through difficulty levels.  
  Address Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Laval, Canada  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-3107 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32421460 Approved no  
  Call Number Serial 106  
Permanent link to this record
 

 
Author Frenkel-Toledo, S.; Yamanaka, J.; Friedman, J.; Feldman, A.G.; Levin, M.F. pdf  url
doi  openurl
  Title Referent control of anticipatory grip force during reaching in stroke: an experimental and modeling study Type Journal Article
  Year 2019 Publication Experimental Brain Research Abbreviated Journal Exp Brain Res  
  Volume 237 Issue 7 Pages 1655-1672  
  Keywords Anticipatory grip force; Referent control; Stroke  
  Abstract (up) To evaluate normal and impaired control of anticipatory grip force (GF) modulation, we compared GF production during horizontal arm movements in healthy and post-stroke subjects, and, based on a physiologically feasible dynamic model, determined referent control variables underlying the GF-arm motion coordination in each group. 63% of 13 healthy and 48% of 13 stroke subjects produced low sustained initial force (< 10 N) and increased GF prior to arm movement. Movement-related GF increases were higher during fast compared to self-paced arm extension movements only in the healthy group. Differences in the patterns of anticipatory GF increases before the arm movement onset between groups occurred during fast extension arm movement only. In the stroke group, longer delays between the onset of GF change and elbow motion were related to clinical upper limb deficits. Simulations showed that GFs could emerge from the difference between the actual and the referent hand aperture (Ra) specified by the CNS. Similarly, arm movement could result from changes in the referent elbow position (Re) and could be affected by the co-activation (C) command. A subgroup of stroke subjects, who increased GF before arm movement, could specify different patterns of the referent variables while reproducing the healthy typical pattern of GF-arm coordination. Stroke subjects, who increased GF after arm movement onset, also used different referent strategies than controls. Thus, altered anticipatory GF behavior in stroke subjects may be explained by deficits in referent control.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0014-4819 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30976821 Approved no  
  Call Number Serial 98  
Permanent link to this record
 

 
Author Lowenthal-Raz, J.; Liebermann, D.G.; Friedman, J.; Soroker, N. url  doi
openurl 
  Title Kinematic descriptors of arm reaching movement are sensitive to hemisphere-specific immediate neuromodulatory effects of transcranial direct current stimulation post stroke Type Journal Article
  Year 2024 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 14 Issue 1 Pages 11971  
  Keywords Humans; *Transcranial Direct Current Stimulation/methods; Male; Female; Middle Aged; *Stroke/physiopathology/therapy; Biomechanical Phenomena; Aged; *Arm/physiopathology; *Movement/physiology; *Stroke Rehabilitation/methods; Single-Blind Method; Cross-Over Studies  
  Abstract (up) Transcranial direct current stimulation (tDCS) exerts beneficial effects on motor recovery after stroke, presumably by enhancement of adaptive neural plasticity. However, patients with extensive damage may experience null or deleterious effects with the predominant application mode of anodal (excitatory) stimulation of the damaged hemisphere. In such cases, excitatory stimulation of the non-damaged hemisphere might be considered. Here we asked whether tDCS exerts a measurable effect on movement quality of the hemiparetic upper limb, following just a single treatment session. Such effect may inform on the hemisphere that should be excited. Using a single-blinded crossover experimental design, stroke patients and healthy control subjects were assessed before and after anodal, cathodal and sham tDCS, each provided during a single session of reaching training (repeated point-to-point hand movement on an electronic tablet). Group comparisons of endpoint kinematics at baseline-number of peaks in the speed profile (NoP; smoothness), hand-path deviations from the straight line (SLD; accuracy) and movement time (MT; speed)-disclosed greater NoP, larger SLD and longer MT in the stroke group. NoP and MT revealed an advantage for anodal compared to sham stimulation of the lesioned hemisphere. NoP and MT improvements under anodal stimulation of the non-lesioned hemisphere correlated positively with the severity of hemiparesis. Damage to specific cortical regions and white-matter tracts was associated with lower kinematic gains from tDCS. The study shows that simple descriptors of movement kinematics of the hemiparetic upper limb are sensitive enough to demonstrate gain from neuromodulation by tDCS, following just a single session of reaching training. Moreover, the results show that tDCS-related gain is affected by the severity of baseline motor impairment, and by lesion topography.  
  Address Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel. nachum@soroker.online  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:38796610; PMCID:PMC11127956 Approved no  
  Call Number Serial 125  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: