toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Friedman, J.; Amiaz, A.; Korman, M. pdf  url
doi  openurl
  Title The online and offline effects of changing movement timing variability during training on a finger-opposition task Type Journal Article
  Year 2022 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 12 Issue 1 Pages (down) 13319  
  Keywords Fingers; Humans; *Learning; *Motor Skills; Movement; Psychomotor Performance; Upper Extremity  
  Abstract In motor learning tasks, there is mixed evidence for whether increased task-relevant variability in early learning stages leads to improved outcomes. One problem is that there may be a connection between skill level and motor variability, such that participants who initially have more variability may also perform worse on the task, so will have more room to improve. To avoid this confound, we experimentally manipulated the amount of movement timing variability (MTV) during training to test whether it improves performance. Based on previous studies showing that most of the improvement in finger-opposition tasks comes from optimizing the relative onset time of the finger movements, we used auditory cues (beeps) to guide the onset times of sequential movements during a training session, and then assessed motor performance after the intervention. Participants were assigned to three groups that either: (a) followed a prescribed random rhythm for their finger touches (Variable MTV), (b) followed a fixed rhythm (Fixed control MTV), or (c) produced the entire sequence following a single beep (Unsupervised control MTV). While the intervention was successful in increasing MTV during training for the Variable group, it did not lead to improved outcomes post-training compared to either control group, and the use of fixed timing led to significantly worse performance compared to the Unsupervised control group. These results suggest that manipulating MTV through auditory cues does not produce greater learning than unconstrained training in motor sequence tasks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:35922460; PMCID:PMC9349301 Approved no  
  Call Number Serial 115  
Permanent link to this record
 

 
Author Biess, A.; Liebermann, D.G.; Flash, T. url  doi
openurl 
  Title A computational model for redundant human three-dimensional pointing movements: integration of independent spatial and temporal motor plans simplifies movement dynamics Type Journal Article
  Year 2007 Publication The Journal of Neuroscience : the Official Journal of the Society for Neuroscience Abbreviated Journal J Neurosci  
  Volume 27 Issue 48 Pages (down) 13045-13064  
  Keywords Analysis of Variance; Arm/physiology; Biomechanics; *Computer Simulation; Humans; *Models, Biological; Movement/*physiology; *Nonlinear Dynamics; Posture/physiology; Psychomotor Performance/*physiology; Range of Motion, Articular/physiology; Reaction Time/physiology; Space Perception/*physiology; Time Factors; Torque  
  Abstract Few computational models have addressed the spatiotemporal features of unconstrained three-dimensional (3D) arm motion. Empirical observations made on hand paths, speed profiles, and arm postures during point-to-point movements led to the assumption that hand path and arm posture are independent of movement speed, suggesting that the geometric and temporal properties of movements are decoupled. In this study, we present a computational model of 3D movements for an arm with four degrees of freedom based on the assumption that optimization principles are separately applied at the geometric and temporal levels of control. Geometric properties (path and posture) are defined in terms of geodesic paths with respect to the kinetic energy metric in the Riemannian configuration space. Accordingly, a geodesic path can be generated with less muscular effort than on any other, nongeodesic path, because the sum of all configuration-speed-dependent torques vanishes. The temporal properties of the movement (speed) are determined in task space by minimizing the squared jerk along the selected end-effector path. The integration of both planning levels into a single spatiotemporal representation simplifies the control of arm dynamics along geodesic paths and results in movements with near minimal torque change and minimal peak value of kinetic energy. Thus, the application of Riemannian geometry allows for a reconciliation of computational models previously proposed for the description of arm movements. We suggest that geodesics are an emergent property of the motor system through the exploration of dynamical space. Our data validated the predictions for joint trajectories, hand paths, final postures, speed profiles, and driving torques.  
  Address Department of Mathematics, Weizmann Institute of Science, 76100 Rehovot, Israel. armin.biess@weizmann.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0270-6474 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18045899 Approved no  
  Call Number Serial 35  
Permanent link to this record
 

 
Author Swissa, Y.; Hacohen, S.; Friedman, J.; Frenkel-Toledo, S. pdf  url
doi  openurl
  Title Sensorimotor performance after high-definition transcranial direct current stimulation over the primary somatosensory or motor cortices in men versus women Type Journal Article
  Year 2022 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 12 Issue Pages (down) 11117  
  Keywords  
  Abstract The primary somatosensory (S1) cortex is a central structure in motor performance. However, transcranial direct current stimulation (tDCS) research aimed at improving motor performance usually targets the primary motor cortex (M1). Recently, sex was found to mediate tDCS response. Thus, we investigated whether tDCS with an anodal electrode placed over S1 improves motor performance and sensation perception in men versus women. Forty-five participants randomly received 15-min high-definition tDCS (HD-tDCS) at 1 mA to S1, M1, or sham stimulation. Reaching performance was tested before and immediately following stimulation. Two-point orientation discrimination (TPOD) of fingers and proprioception of a reaching movement were also tested. Although motor performance did not differ between groups, reaching reaction time improved in the M1 group men. Reaching movement time and endpoint error improved in women and men, respectively. Correct trials percentage for TPOD task was higher in the S1 compared to the M1 group in the posttest and improved only in the S1 group. Reaching movement time for the proprioception task improved, overall, and endpoint error did not change. Despite the reciprocal connections between S1 and M1, effects of active tDCS over S1 and M1 may specifically influence sensation perception and motor performance, respectively. Also, sex may mediate effects of HD-tDCS on motor performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 114  
Permanent link to this record
 

 
Author Zacks, O.; Friedman, J. pdf  url
doi  openurl
  Title Analogies can speed up the motor learning process Type Journal Article
  Year 2020 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 10 Issue 1 Pages (down) 6932  
  Keywords  
  Abstract Analogies have been shown to improve motor learning in various tasks and settings. In this study we tested whether applying analogies can shorten the motor learning process and induce insight and skill improvement in tasks that usually demand many hours of practice. Kinematic measures were used to quantify participant's skill and learning dynamics. For this purpose, we used a drawing task, in which subjects drew lines to connect dots, and a mirror game, in which subjects tracked a moving stimulus. After establishing a baseline, subjects were given an analogy, explicit instructions or no further instruction. We compared their improvement in skill (quantified by coarticulation or smoothness), accuracy and movement duration. Subjects in the analogy and explicit groups improved their coarticulation in the target task, while significant differences were found in the mirror game only at a slow movement frequency between analogy and controls.We conclude that a verbal analogy can be a useful tool for rapidly changing motor kinematics and movement strategy in some circumstances, although in the tasks selected it did not produce better performance in most measurements than explicit guidance. Furthermore, we observed that different movement facets may improve independently from others, and may be selectively affected by verbal instructions. These results suggest an important role for the type of instruction in motor learning.  
  Address Dept. of Physical Therapy, Stanley Steyer School of Health Professions, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32332826; PMCID:PMC7181737 Approved no  
  Call Number Penn State @ write.to.jason @ Serial 105  
Permanent link to this record
 

 
Author Liebermann, D.G.; Levin, M.F.; McIntyre, J.; Weiss, P.L.; Berman, S. url  doi
openurl 
  Title Arm path fragmentation and spatiotemporal features of hand reaching in healthy subjects and stroke patients Type Journal Article
  Year 2010 Publication Conference Proceedings : ... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference Abbreviated Journal Conf Proc IEEE Eng Med Biol Soc  
  Volume 2010 Issue Pages (down) 5242-5245  
  Keywords Aged; Aged, 80 and over; Analysis of Variance; Arm/*physiology; Biomechanics/physiology; Female; Hand/*physiology; *Health; Humans; Male; Middle Aged; Movement/*physiology; Posture/physiology; Principal Component Analysis; Stroke/*physiopathology; Time Factors  
  Abstract Arm motion in healthy humans is characterized by smooth and relatively short paths. The current study focused on 3D reaching in stroke patients. Sixteen right-hemiparetic stroke patients and 8 healthy adults performed 42 reaching movements towards 3 visual targets located at an extended arm distance. Performance was assessed in terms of spatial and temporal features of the movement; i.e., hand path, arm posture and smoothness. Differences between groups and within subjects were hypothesized for spatial and temporal aspects of reaching under the assumption that both are independent. As expected, upper limb motion of patients was characterized by longer and jerkier hand paths and slower speeds. Assessment of the number of sub-movements within each movement did not clearly discriminate between groups. Principal component analyses revealed specific clusters of either spatial or temporal measures, which accounted for a large proportion of the variance in patients but not in healthy controls. These findings support the notion of a separation between spatial and temporal features of movement. Stroke patients may fail to integrate the two aspects when executing reaching movements towards visual targets.  
  Address Physical Therapy Dept., Sackler Faculty of Medicine, Tel Aviv University, 69978 Israel. dlieberm@post.tau.ac.il  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1557-170X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:21096047 Approved no  
  Call Number Serial 30  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: