toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cantergi, D.; Awasthi, B.; Friedman, J. pdf  url
doi  openurl
  Title Moving objects by imagination? Amount of finger movement and pendulum length determine success in the Chevreul pendulum illusion Type Journal Article
  Year 2021 Publication Human Movement Science Abbreviated Journal Human Movement Science  
  Volume (down) 80 Issue Pages 102879  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-9457 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 111  
Permanent link to this record
 

 
Author Portnoy, S.; Mimouni-Bloch, A.; Rosenberg, L.; Offek, H.; Berman, T.; Kochavi, M.; Orman, G.; Friedman, J. pdf  url
doi  openurl
  Title Graphical Product Quality and Muscle Activity in Children With Mild Disabilities Drawing on a Horizontally or Vertically Oriented Tablet Type Journal Article
  Year 2018 Publication American Journal of Occupational Therapy Abbreviated Journal Am J Occup Ther  
  Volume (down) 72 Issue 6 Pages 1-7  
  Keywords  
  Abstract OBJECTIVE. We compared performance level and muscle activity patterns during shape copying and tracing in two positions, while sitting at a desk and while standing in front of a wall, between typically developing (TD) preschool children and children with mild disabilities (MD).

METHOD. Twenty-two TD children (8 boys, 14 girls; mean [M] age 5 5.2 yr, standard deviation [SD] 5 0.1) and 13 children with MD (9 boys, 4 girls; M age 5 4.9 yr, SD 5 0.5) participated in this study.

RESULTS. The children performed faster and smoother movements when copying shapes on the vertical surface, with no reduction of accuracy, than on the horizontal surface. Children with MD exerted their upper trapezius while performing the short tasks on the vertical surface compared with their muscle activity on the horizontal surface.

CONCLUSION. Incorporating short copying or drawing tasks on a vertical surface may increase the control of proximal muscles and ease graphomotor performance in children with MD.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-9490 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Penn State @ write.to.jason @ Serial 91  
Permanent link to this record
 

 
Author Kaufman-Cohen, Y.; Friedman, J.; Levanon, Y.; Jacobi, G.; Doron, N.; Portnoy, S. pdf  url
doi  openurl
  Title Wrist Plane of Motion and Range During Daily Activities Type Journal Article
  Year 2018 Publication American Journal of Occupational Therapy Abbreviated Journal Am J Occup Ther  
  Volume (down) 72 Issue 6 Pages 1-10  
  Keywords  
  Abstract OBJECTIVE. The dart-throwing motion (DTM) is a multiplane wrist motion that is needed for many daily occupations. Mobilization along the DTM plane may be essential for rehabilitation after wrist injury, but DTM angles are reported for the dominant hand alone, so their relevance to injury in the nondominant hand cannot be surmised. The aim of this study was to quantify the DTM plane angles for both hands during different activities of daily living (ADLs).

METHOD. Forty-three healthy participants wore a twin-axis electrogoniometer during ADLs.

RESULTS. No significant differences were found between the DTM plane angles of the dominant (20°�45°) and nondominant (15°�40°) hands. These angles varied by task and across participants.

CONCLUSION. The DTM plane is a functional motion used by both hands during ADLs. Because the DTM plane angle differs among hands, tasks, and individual clients, wrist rehabilitation involving the DTM plane should not be limited to a singular DTM plane angle.OBJECTIVE. The dart-throwing motion (DTM) is a multiplane wrist motion that is needed for many daily occupations. Mobilization along the DTM plane may be essential for rehabilitation after wrist injury, but DTM angles are reported for the dominant hand alone, so their relevance to injury in the nondominant hand cannot be surmised. The aim of this study was to quantify the DTM plane angles for both hands during different activities of daily living (ADLs).

METHOD. Forty-three healthy participants wore a twin-axis electrogoniometer during ADLs.

RESULTS. No significant differences were found between the DTM plane angles of the dominant (20°�45°) and nondominant (15°�40°) hands. These angles varied by task and across participants.

CONCLUSION. The DTM plane is a functional motion used by both hands during ADLs. Because the DTM plane angle differs among hands, tasks, and individual clients, wrist rehabilitation involving the DTM plane should not be limited to a singular DTM plane angle.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0272-9490 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 92  
Permanent link to this record
 

 
Author Hoffman, J.R.; Liebermann, D.; Gusis, A. url  openurl
  Title Relationship of leg strength and power to ground reaction forces in both experienced and novice jump trained personnel Type Journal Article
  Year 1997 Publication Aviation, Space, and Environmental Medicine Abbreviated Journal Aviat Space Environ Med  
  Volume (down) 68 Issue 8 Pages 710-714  
  Keywords *Aerospace Medicine; *Aviation; Biomechanics; Humans; Leg/*physiology; Male; Military Personnel/*education; *Physical Education and Training; Physical Fitness/*physiology; Range of Motion, Articular; Wounds and Injuries/etiology/*prevention & control  
  Abstract METHODS: There were 14 male soldiers who participated in this study examining the relationship of leg strength and power on landing performance. Subjects were separated into two groups. The first group (E, n = 7) were parachute training instructors and highly experienced in parachute jumping. The second group of subjects (N, n = 7) had no prior parachute training experience and were considered novice jumpers. All subjects were tested for one-repetition maximum (1 RM) squat strength and maximal jump power. Ground reaction forces (GRF) and the time to peak force (TPF) at landing were measured from jumps at four different heights (95 cm, 120 cm, 145 cm, and 170 cm). All jumps were performed from a customized jump platform onto a force plate. RESULTS: No differences were seen between E and N in either IRM squat strength or in MJP. In addition, no differences were seen between the groups for time to peak force at any jump height. However, significantly greater GRF were observed in E compared to N. Moderate to high correlations between maximal jump power and GRF (r values ranging from 0.62-0.93) were observed in E. Although maximal jump power and the TPF was significantly correlated (r = -0.89) at only 120 cm for E, it was interesting to note that the correlations between MJP and the time to peak force in E were all negative and that the correlations between these variables in N were all positive. CONCLUSIONS: These results suggest that experienced parachutists may use a different landing strategy than novice jumpers. This difference may be reflected by differences in GRF generated during impact and a more efficient utilization of muscle power during the impact phase of the landing.  
  Address Aeromedical Center, Physiological Training Unit, Israel Air Force, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0095-6562 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9262813 Approved no  
  Call Number Serial 60  
Permanent link to this record
 

 
Author Melzer, I.; Liebermann, D.G.; Krasovsky, T.; Oddsson, L.I.E. url  doi
openurl 
  Title Cognitive load affects lower limb force-time relations during voluntary rapid stepping in healthy old and young adults Type Journal Article
  Year 2010 Publication The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences Abbreviated Journal J Gerontol A Biol Sci Med Sci  
  Volume (down) 65 Issue 4 Pages 400-406  
  Keywords *Accidental Falls; Adult; Aged; Aged, 80 and over; Aging/*physiology; Attention/physiology; Cognition/*physiology; Gait/*physiology; Humans; Postural Balance/*physiology; Reaction Time  
  Abstract BACKGROUND: Quick step execution may prevent falls when balance is lost; adding a concurrent task delays this function. We investigate whether push-off force-time relations during the execution of rapid voluntary stepping is affected by a secondary task in older and young adults. METHODS: Nineteen healthy older adults and 12 young adults performed rapid voluntary stepping under single- and dual-task conditions. Peak power, peak force, and time to peak force during preparatory and swing phases of stepping were extracted from center of pressure and ground reaction force data. RESULTS: For dual-task condition compared with single-task condition, older adults show a longer time to reach peak force during the preparation and swing phases compared with young adults (approximately 25% vs approximately 10%, respectively). Peak power and peak force were not affected by a concurrent attention-demanding task. CONCLUSION: Older adults have difficulty allocating sufficient attention for fast muscle recruitment when concurrently challenged by an attention-demanding task.  
  Address Department of Physical Therapy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1079-5006 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19939911 Approved no  
  Call Number Serial 50  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: