|
Raveh, E., Portnoy, S., & Friedman, J. (2018). Adding vibrotactile feedback to a myoelectric-controlled hand improves performance when online visual feedback is disturbed. Hum Mov Sci, 58, 32–40.
Abstract: We investigated whether adding vibrotactile feedback to a myoelectric-controlled hand, when visual feedback is disturbed, can improve performance during a functional test. For this purpose, able-bodied subjects, activating a myoelectric-controlled hand attached to their right hand performed the modified Box & Blocks test, grasping and manipulating wooden blocks over a partition. This was performed in 3 conditions, using a repeated-measures design: in full light, in a dark room where visual feedback was disturbed and no auditory feedback – one time with the addition of tactile feedback provided during object grasping and manipulation, and one time without any tactile feedback. The average time needed to transfer one block was measured, and an infrared camera was used to give information on the number of grasping errors during performance of the test. Our results show that when vibrotactile feedback was provided, performance time was reduced significantly, compared with when no vibrotactile feedback was available. Furthermore, the accuracy of grasping and manipulation was improved, reflected by significantly fewer errors during test performance. In conclusion, adding vibrotactile feedback to a myoelectric-controlled hand has positive effects on functional performance when visual feedback is disturbed. This may have applications to current myoelectric-controlled hands, as adding tactile feedback may help prosthesis users to improve their functional ability during daily life activities in different environments, particularly when limited visual feedback is available or desirable.
|
|
|
Ezrati, O., Friedman, J., & Dar, R. (2019). Attenuation of access to internal states in high obsessive-compulsive individuals might increase susceptibility to false feedback: Evidence from a visuo-motor hand-reaching task. Journal of Behavior Therapy and Experimental Psychiatry, 65, 101445.
Abstract: Background and objectives
The Seeking Proxies for Internal States (SPIS) model of obsessive-compulsive disorder (OCD) posits that obsessive-compulsive (OC) individuals have attenuated access to their internal states. Hence, they seek and rely on proxies, or discernible substitutes for these internal states. In previous studies, participants with high OC tendencies and OCD patients, compared to controls, showed increased reliance on external proxies and were more influenced by false feedback when judging their internal states. This study is the first to examine the effects of false feedback on performance of hand movements in participants with high and low OC tendencies.
Method
Thirty-four participants with high OC tendencies and 34 participants with low OC tendencies were asked to perform accurate hand reaches without visual feedback in two separate sessions of a computerized hand-reaching task: once after valid feedback training of their hand location and once with false-rotated feedback. We assessed the accuracy and directional adaptation of participants' reaches.
Results
As predicted, high OC participants evidenced a larger decrease in their hand positioning accuracy after training with false feedback compared to low OC participants.
Limitations
The generalization of our findings to OCD requires replication with a clinical sample.
Conclusions
These results suggest that in addition to self-perceptions, motor performance of OC individuals is prone to be overly influenced by false feedback, possibly due to attenuated access to proprioceptive cues. These findings may be particularly relevant to understanding the distorted sense of agency in OCD.
|
|
|
Portnoy, S., Mimouni-Bloch, A., Rosenberg, L., Offek, H., Berman, T., Kochavi, M., et al. (2018). Graphical Product Quality and Muscle Activity in Children With Mild Disabilities Drawing on a Horizontally or Vertically Oriented Tablet. Am J Occup Ther, 72(6), 1–7.
Abstract: OBJECTIVE. We compared performance level and muscle activity patterns during shape copying and tracing in two positions, while sitting at a desk and while standing in front of a wall, between typically developing (TD) preschool children and children with mild disabilities (MD).
METHOD. Twenty-two TD children (8 boys, 14 girls; mean [M] age 5 5.2 yr, standard deviation [SD] 5 0.1) and 13 children with MD (9 boys, 4 girls; M age 5 4.9 yr, SD 5 0.5) participated in this study.
RESULTS. The children performed faster and smoother movements when copying shapes on the vertical surface, with no reduction of accuracy, than on the horizontal surface. Children with MD exerted their upper trapezius while performing the short tasks on the vertical surface compared with their muscle activity on the horizontal surface.
CONCLUSION. Incorporating short copying or drawing tasks on a vertical surface may increase the control of proximal muscles and ease graphomotor performance in children with MD.
|
|
|
Kaufman-Cohen, Y., Friedman, J., Levanon, Y., Jacobi, G., Doron, N., & Portnoy, S. (2018). Wrist Plane of Motion and Range During Daily Activities. Am J Occup Ther, 72(6), 1–10.
Abstract: OBJECTIVE. The dart-throwing motion (DTM) is a multiplane wrist motion that is needed for many daily occupations. Mobilization along the DTM plane may be essential for rehabilitation after wrist injury, but DTM angles are reported for the dominant hand alone, so their relevance to injury in the nondominant hand cannot be surmised. The aim of this study was to quantify the DTM plane angles for both hands during different activities of daily living (ADLs).
METHOD. Forty-three healthy participants wore a twin-axis electrogoniometer during ADLs.
RESULTS. No significant differences were found between the DTM plane angles of the dominant (20°�45°) and nondominant (15°�40°) hands. These angles varied by task and across participants.
CONCLUSION. The DTM plane is a functional motion used by both hands during ADLs. Because the DTM plane angle differs among hands, tasks, and individual clients, wrist rehabilitation involving the DTM plane should not be limited to a singular DTM plane angle.OBJECTIVE. The dart-throwing motion (DTM) is a multiplane wrist motion that is needed for many daily occupations. Mobilization along the DTM plane may be essential for rehabilitation after wrist injury, but DTM angles are reported for the dominant hand alone, so their relevance to injury in the nondominant hand cannot be surmised. The aim of this study was to quantify the DTM plane angles for both hands during different activities of daily living (ADLs).
METHOD. Forty-three healthy participants wore a twin-axis electrogoniometer during ADLs.
RESULTS. No significant differences were found between the DTM plane angles of the dominant (20°�45°) and nondominant (15°�40°) hands. These angles varied by task and across participants.
CONCLUSION. The DTM plane is a functional motion used by both hands during ADLs. Because the DTM plane angle differs among hands, tasks, and individual clients, wrist rehabilitation involving the DTM plane should not be limited to a singular DTM plane angle.
|
|
|
Cantergi, D., Awasthi, B., & Friedman, J. (2021). Moving objects by imagination? Amount of finger movement and pendulum length determine success in the Chevreul pendulum illusion. Human Movement Science, 80, 102879.
|
|